Câu hỏi:
13/07/2024 604Cho tam giác ABC vuông tại a đường cao AH. E, F lần lượt hình chiếu H trên AB và AC. M là trung điểm BC.
a) Chứng minh AM vuông EF
b) N là trung điểm AB, MN cắt AH tại D. Chứng minh EF // BD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét tứ giác AEHF có góc
nên AEHF là hình chữ nhật
Suy ra:
Ta có: ΔABC vuông tại A
Mà AM là trung tuyến
Nên MA = MB = MC
⇒ ΔMAC cân tại M
⇒
⇒ AM vuông góc với EF(1)
b) Xét ΔABC có M, N lần lượt la trung điểm của BC và BA nên MN là đường trung bình
⇒ MN // AC
Hay MN vuông góc với AB
Xét ΔMAB có AH, MN là các đường cao
AH cắt MN tại D
Do đó: D là trực tâm của tam giác MAB
⇒ BD vuông góc với AM (2)
Từ (1) và (2) suy ra BD // EF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.
a) Tìm giao tuyến của (OMN) và (BCD).
b) Tìm giao điểm của BC với (OMN).
c) Tìm giao điểm của BD với (OMN).
Câu 2:
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?
b) Gọi M là trung điểm của AC. Tính góc .
Câu 3:
Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).
Câu 4:
Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài bằng?
Câu 5:
Cho tam giác ABC có BA = 8, AC = 9. BC = 10. Một điểm M nằm trên BC sao cho BM = 7. Tính AM.
Câu 6:
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 20cm. Tính AC, BH, CH, AH?
Câu 7:
Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:
a) DB = CF.
b) ∆BDC = ∆FCD.
c) DE // BC và .
về câu hỏi!