Cho tam giác ABC vuông tại a đường cao AH. E, F lần lượt hình chiếu H trên AB và AC. M là trung điểm BC.
a) Chứng minh AM vuông EF
b) N là trung điểm AB, MN cắt AH tại D. Chứng minh EF // BD.
Cho tam giác ABC vuông tại a đường cao AH. E, F lần lượt hình chiếu H trên AB và AC. M là trung điểm BC.
a) Chứng minh AM vuông EF
b) N là trung điểm AB, MN cắt AH tại D. Chứng minh EF // BD.
Quảng cáo
Trả lời:

a) Xét tứ giác AEHF có góc
nên AEHF là hình chữ nhật
Suy ra:
Ta có: ΔABC vuông tại A
Mà AM là trung tuyến
Nên MA = MB = MC
⇒ ΔMAC cân tại M
⇒
⇒ AM vuông góc với EF(1)
b) Xét ΔABC có M, N lần lượt la trung điểm của BC và BA nên MN là đường trung bình
⇒ MN // AC
Hay MN vuông góc với AB
Xét ΔMAB có AH, MN là các đường cao
AH cắt MN tại D
Do đó: D là trực tâm của tam giác MAB
⇒ BD vuông góc với AM (2)
Từ (1) và (2) suy ra BD // EF.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.
Khi đó OI = (OMN) ∩ (BCD)
b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD
K, H ∈ OI nên K, H ∈ (OMN)
Vậy H = BC ∩ (OMN)
c) K, H ∈ OI nên K, H ∈ (OMN)
Nên K = BD ∩ (OMN).
Lời giải

a) Xét tam giác AED và CEF có:
EA = EC
(đối đỉnh)
ED = EF
⇒ ∆AED = ∆CEF (c.g.c)
⇒ DA = CF
Mà DA = DB nên DB = CF
b) ∆AED = ∆CEF nên:
Suy ra: AB // CF
⇒ (so le trong)
Xét tam giác BDC và FCD có:
DC chung
BD = CF
⇒ ∆BDC = ∆FCD (c.g.c)
c) ∆BDC = ∆FCD nên
Suy ra: DE // BC (2 góc so le trong bằng nhau)
Lại có BC = DF = 2DE
Nên: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.