Câu hỏi:

13/07/2024 884

Cho tam giác ABC vuông tại a đường cao AH. E, F lần lượt hình chiếu H trên AB và AC. M là trung điểm BC.

a) Chứng minh AM vuông EF

b) N là trung điểm AB, MN cắt AH tại D. Chứng minh EF // BD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét tứ giác AEHF có góc AEH^=AFH^=FAE^=90°

nên AEHF là hình chữ nhật

Suy ra: AFE^=AHE^=ABC^

Ta có: ΔABC vuông tại A

Mà AM là trung tuyến

Nên MA = MB = MC

ΔMAC cân tại M

 MAC^=MCA^

MAC^+AFE^=ABC^+ACB^=90°

AM vuông góc với EF(1)

b) Xét ΔABC có M, N lần lượt la trung điểm của BC và BA nên MN là đường trung bình

MN // AC
Hay MN vuông góc với AB

Xét ΔMAB có AH, MN là các đường cao

AH cắt MN tại D

Do đó: D là trực tâm của tam giác MAB

BD vuông góc với AM (2)

Từ (1) và (2) suy ra BD // EF.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:

a) DB = CF.

b) ∆BDC = ∆FCD.

c) DE // BC và DE=12BC.

Xem đáp án » 13/07/2024 20,987

Câu 2:

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.

a) Tìm giao tuyến của (OMN) và (BCD).

b) Tìm giao điểm của BC với (OMN).

c) Tìm giao điểm của BD với (OMN).

Xem đáp án » 12/07/2024 16,399

Câu 3:

Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài ABGC bằng?

Xem đáp án » 13/07/2024 15,723

Câu 4:

Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?

b) Gọi M là trung điểm của AC. Tính góc BMC^.

Xem đáp án » 13/07/2024 14,436

Câu 5:

Cho tam giác ABC, đường trung tuyến AD. Gọi M là một điểm trên cạnh AC sao cho AM=12MC. Gọi O là giao điểm của BM và AD. Chứng minh rằng:

a, O là trung điểm của AD.

b, OM=14BM.

Xem đáp án » 13/07/2024 9,435

Câu 6:

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC:

a) Chứng minh: AB2 + CH2 = AC2 + BH2.

b) Trên AB lấy E, trên AC lấy điểm F. Chứng minh: EF < BC.

c) Biết AB = 6cm; AC = 8cm. Tính AH, BH, CH.

Xem đáp án » 13/07/2024 9,026

Câu 7:

Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).

Xem đáp án » 12/07/2024 8,570
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay