CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=SB=SC. Gọi I là trung điểm của AB. Góc giữa SI và BC bằng? (ảnh 1)

Gọi K là trung điểm của AC.

Khi đó IK//BCSI,BC^=SI,IK^.

Ta có SI=12AB,SK=12AC,IK=12BC(tính chất đường trung tuyến trong tam giác vuông).

Do SA=SB=SCAB=BC=AC, khi đó SI=SK=IK hay ΔSIK là tam giác đều.

Vậy SI,BC^=SI,IK^=60°.

Lời giải

Đáp án đúng là: D

Chọn hệ trục toạ độ như hình vẽ

Một cái thùng đựng dầu có thiết diện ngang ( mặt trong của thùng) là một đường elip có trục lớn là 1m, trục bé 0,8m,  (ảnh 2)

Vì độ dài trục lớn là 1m nên ta có 2a=1a=12.

Độ dài trục bé là 0,8m nên ta có 2b=0,8b=25.

Ta có phương trình của Elip là x214+y2425=1.

Gọi M, N lần lượt là giao điểm của dầu với elip.

Gọi S1 là diện tích của Elip ta có S1=πab=π.12.25=π5.

Gọi S2 là diện tích của hình phẳng giới hạn bởi Elip và đường thẳng MN

Theo đề bài chiều cao của dầu hiện có trong thùng ( tính từ đáy thùng lên mặt dầu) là 0,6m nên ta có phương trình của đường thẳng MN là y=15.

Mặt khác từ phương trình x214+y2425=1, ta có y=4514x2.

Tọa độ giao điểm của elip và đường thẳng y=15 là nghiệm của hệ:

x214+y2425=1y=15x=±34y=15.

 

Do đó đường thẳng y=15 cắt Elip tại hai đỉnh M, N có hoành độ lần lượt là 34 34 nên S2=34344514x215dx=45343414x2dx310.

Tính I=343414x2dx.

Đặt x=12sintdx=12costdt.

Đổi cận: Khi x=34 thì t=π3; khi x=34 thì t=π3.

I=π3π312.12cos2tdt=18π3π31+cos2tdt=182π3+32.

Vậy S2=45.182π3+32310=π15320.

Thể tích của dầu trong thùng là V=π5π15+320.3=1,52.

Vậy V=1,52m3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP