Câu hỏi:

03/03/2024 228

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:

a) DB = CF.

b) ∆BDC = ∆FCD.

c) DE // BC và DE=12BC.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC (ảnh 1)

a) Xét tam giác AED và CEF có:

EA = EC

AED^=CEF^(đối đỉnh)

ED = EF

∆AED = ∆CEF (c.g.c)

DA = CF

Mà DA = DB nên DB = CF

b) ∆AED = ∆CEF nên: A^=ECF^

Suy ra: AB // CF

BDC^=DCF^(so le trong)

Xét tam giác BDC và FCD có:

DC chung

BDC^=DCF^

BD = CF

∆BDC = ∆FCD (c.g.c)

c) ∆BDC = ∆FCD nên DCB^=CDF^

Suy ra: DE // BC (2 góc so le trong bằng nhau)

Lại có BC = DF = 2DE

Nên: DE=12BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. trên AC và AD lấy 2 điểm MN sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD.

a) Tìm giao tuyến của (OMN) và (BCD).

b) Tìm giao điểm của BC với (OMN).

c) Tìm giao điểm của BD với (OMN).

Xem đáp án » 12/07/2024 15,663

Câu 2:

Cho tam giác đều ABC cạnh 2a, G là trọng tâm. Khi đó độ dài ABGC bằng?

Xem đáp án » 13/07/2024 15,234

Câu 3:

Cho tam giác ABC, D là trung điểm AB, E là trung điểm AC. Vẽ F sao cho E là trung điểm DF. Chứng minh:

a) DB = CF.

b) ∆BDC = ∆FCD.

c) DE // BC và DE=12BC.

Xem đáp án » 13/07/2024 11,776

Câu 4:

Cho tam giác ABC vuông tại A có đường cao AH. Biết BH = 4 cm, CH = 9cm. a) Tính AH, AB, AC?

b) Gọi M là trung điểm của AC. Tính góc BMC^.

Xem đáp án » 13/07/2024 9,403

Câu 5:

Cho tứ giác lồi ABCD với hai cặp cạnh đối không song song và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD); (SAD) và (SBC).

Xem đáp án » 12/07/2024 8,223

Câu 6:

Cho tam giác ABC có BA = 8, AC = 9. BC = 10. Một điểm M nằm trên BC sao cho BM = 7. Tính AM.

Xem đáp án » 03/03/2024 6,587

Câu 7:

Cho tam giác ABC vuông tại A (AB < AC), có trung tuyến AM. Kẻ MN vuông góc với AB, và MP vuông góc với AC (N thuộc AB; P thuộc AC).

a) Tứ giác ANMP là hình gì? vì sao?

b) Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.

c) Gọi E là trung điểm của BM, F là giao điểm của AM và PN. Chứng minh tứ giác ABEF là hình thang cân.

Xem đáp án » 13/07/2024 5,961

Bình luận


Bình luận