Câu hỏi:
03/03/2024 861
Cho tứ giác ABCD có . Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.
Cho tứ giác ABCD có . Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.
Quảng cáo
Trả lời:

Giả sử AD cắt BC tại E
Khi đó từ giả thiết: ta có:
Ta lần lượt có: MN // AD // PQ; MQ // BC // PN
Do đó dựa trên tính chất của góc có cạnh tương ứng song song ta được:
Do đó bốn điểm M, N, P, Q cùng nằm trên một đường tròn đường kính NQ.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác AED và CEF có:
EA = EC
(đối đỉnh)
ED = EF
⇒ ∆AED = ∆CEF (c.g.c)
⇒ DA = CF
Mà DA = DB nên DB = CF
b) ∆AED = ∆CEF nên:
Suy ra: AB // CF
⇒ (so le trong)
Xét tam giác BDC và FCD có:
DC chung
BD = CF
⇒ ∆BDC = ∆FCD (c.g.c)
c) ∆BDC = ∆FCD nên
Suy ra: DE // BC (2 góc so le trong bằng nhau)
Lại có BC = DF = 2DE
Nên: .
Lời giải

a) Trong mp(ACD) gọi I là giao điểm của NM và CD.
Khi đó OI = (OMN) ∩ (BCD)
b) Trong mp(BCD) gọi H, K là giao điểm OI với BC và BD
K, H ∈ OI nên K, H ∈ (OMN)
Vậy H = BC ∩ (OMN)
c) K, H ∈ OI nên K, H ∈ (OMN)
Nên K = BD ∩ (OMN).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.