Giả sử a, b là 2 số thực phân biệt thỏa mãn a2 + 3a = b2 + 3b = 2. Chứng minh rằng:
a) a + b = – 3.
b) a3 + b3 = – 45.
Giả sử a, b là 2 số thực phân biệt thỏa mãn a2 + 3a = b2 + 3b = 2. Chứng minh rằng:
a) a + b = – 3.
b) a3 + b3 = – 45.
Quảng cáo
Trả lời:
a) Ta có: a2 + 3a = b2 + 3b
⇔ (a2 – b2) + (3a – 3b) = 0
⇔ (a – b)(a + b) + 3(a – b) = 0
⇔ (a – b)(a + b + 3) = 0
Mà a, b phân biệt nên a – b khác 0
Suy ra: a + b + 3 = 0 hay a + b = -3.
b) Xét a3 + b3 = (a + b)(a2 + ab + b2) = -3(a2 + ab + b2)
Lại có: a2 + 3a = b2 + 3b = 2
Nên: a2 + b2 + 3(a + b) = 4
Suy ra: a2 + b2 = 4 – 3(a + b) = 13
Mà (a + b)2 = (-3)2 = 9
⇒ (a + b)2 – (a2 + b2) = 9 – 13 = -4
⇒ 2ab = -4 hay ab = -2
Vậy a3 + b3 = -3(a2 - ab + b2) = -3(13 + 2) = -45.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Từ (1) và (2) ta có:
⇒
Vậy B không phải là số nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.