Câu hỏi:

13/07/2024 3,999

Cho hình lập phương ABCD.A'B'C'D'. Chứng minh rằng A'CB'D'=0

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lập phương ABCD.A'B'C'D'. Chứng minh rằng vecto A'C. vecto B'D=0 (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn AI=3IG, ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8 cm (H.2.30).

Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một (ảnh 1)

Xem đáp án » 13/07/2024 14,719

Câu 2:

Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 1 (H.2.12). Tính độ dài của vectơ AC+C'D'.

Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 1 (ảnh 1)

Xem đáp án » 13/07/2024 13,096

Câu 3:

Khi chuyển động trong không gian, máy bay luôn chịu tác động của bốn lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học (H.2.20). Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900 km/h lên 920 km/h, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900 km/h và 920 km/h lần lượt được biểu diễn bởi hai vectơ F1F2. Hãy giải thích vì sao F1=kF2 với k là một số thực dương nào đó. Tính giá trị của k (làm tròn kết quả đến chữ số thập phân thứ hai).

Khi chuyển động trong không gian, máy bay luôn chịu tác động (ảnh 1)

Xem đáp án » 13/07/2024 11,093

Câu 4:

Trong Ví dụ 10, cho hình chóp tứ giác đều S.ABCD có độ dài tất cả các cạnh bằng a (H.2.26). Hãy tính các tích vô hướng ASBD ASCD.

Trong Ví dụ 10, cho hình chóp tứ giác đều S.ABCD có độ dài tất cả (ảnh 1)

Xem đáp án » 13/07/2024 9,154

Câu 5:

Cho tứ diện ABCD (H.2.13). Chứng minh rằng AB+CD=AD+CB.

Cho tứ diện ABCD (H.2.13). Chứng minh rằng vecto AB + CD = vecto AD+ CB (ảnh 1)

Xem đáp án » 13/07/2024 6,886

Câu 6:

Cho hình chóp S.ABC. Trên cạnh SA, lấy điểm M sao cho SM = 2AM. Trên cạnh BC, lấy điểm N sao cho CN = 2BN. Chứng minh rằng MN=13SA+BC+AB.

Xem đáp án » 13/07/2024 6,839

Câu 7:

Cho hình chóp tứ giác S.ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu SA+SC=SB+SD.

Xem đáp án » 13/07/2024 4,873

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL