Câu hỏi:
13/07/2024 168Cho các hàm số đa thức sau:
(3) y = x4 – 4x2 + 3.
a) Tìm đạo hàm cấp một và đạo hàm cấp hai của các hàm số trên.
b) Tìm tất cả các điểm cực trị của các hàm số trên.
c) Vẽ đồ thị của các hàm số trên.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
(3) y = x4 – 4x2 + 3
a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x4 – 4x2 + 3), kết quả sẽ được hiển thị như hình bên dưới
Để tính đạo hàm cấp hai ta dùng lệnh Derivative(x4 – 4x2 + 3, 2), kết quả sẽ được hiển thị như hình bên dưới
b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(x4 – 4x2 + 3), kết quả sẽ được hiển thị như hình sau
c) Nhập hàm số y = x4 – 4x2 + 3 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
d) y = sin2x – x trên đoạn .
Câu 2:
Cho các hàm số phân thức hữu tỉ sau:
(3) ;
a) Tìm đạo hàm cấp một của các hàm số trên.
b) Tìm các đường tiệm cận của đồ thị các hàm số trên.
c) Vẽ đồ thị của các hàm số trên.
Câu 3:
Cho các hàm số phân thức hữu tỉ sau:
(1) ;
a) Tìm đạo hàm cấp một của các hàm số trên.
b) Tìm các đường tiệm cận của đồ thị các hàm số trên.
c) Vẽ đồ thị của các hàm số trên.
Câu 4:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4];
Câu 5:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
Câu 6:
Cho các hàm số phân thức hữu tỉ sau:
(2) ;
a) Tìm đạo hàm cấp một của các hàm số trên.
b) Tìm các đường tiệm cận của đồ thị các hàm số trên.
c) Vẽ đồ thị của các hàm số trên.
về câu hỏi!