Câu hỏi:
21/04/2024 325b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là:
A. 50.
B. 40.
C. 14,23.
D. 70,87.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Đáp án đúng là: C
Từ Bảng 8 ta có bảng sau:
Nhóm |
Tần số |
Tần số tích lũy |
[40; 50) [50; 60) [60; 70) [70; 80) [80; 90) |
3 6 19 23 9 |
3 9 28 51 60 |
|
n = 60 |
|
Số phần tử của mẫu là n = 60.
Ta có: mà 9 < 15 < 28. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm [60; 70) có s = 60; h = 10; n3 = 19 và nhóm 2 là nhóm [50; 60) có cf2 = 9.
Áp dụng công thức, ta có tứ phân vị thứ nhất là
(nghìn đồng).
Ta có: mà 28 < 45 < 51. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45. Xét nhóm 4 là nhóm [70; 80) có t = 70; l = 10; n4 = 23 và nhóm 3 là nhóm [60; 70) có cf3 = 28.
Áp dụng công thức, ta có tứ phân vị thứ ba là
(nghìn đồng).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
∆Q = Q3 – Q1 = ≈ 14,23 (nghìn đồng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của một công ty (đơn vị: triệu đồng).
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Nhóm |
Tần số |
[10; 15) [15; 20) [20; 25) [25; 30) [30; 35) [35; 40) |
15 18 10 10 5 2 |
|
n = 60 |
Câu 2:
Bảng 8 biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày.
Nhóm |
Tần số |
[40; 50) [50; 60) [60; 70) [70; 80) [80; 90) |
3 6 19 23 9 |
|
n = 60 |
Bảng 8
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là:
A. 50.
B. 30.
C. 6.
D. 69,8.
Câu 3:
Tính khoảng biến thiên của mẫu số liệu ghép nhóm cho bởi Bảng 1 trong phần mở đầu.
Nhóm |
Tần số |
[40; 47) [47; 54) [54; 61) [61; 68) [68; 75) |
1 6 21 21 11 |
|
n = 60 |
Bảng 1
Câu 4:
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Nhóm |
Tần số |
[20; 30) [30; 40) [40; 50) [50; 60) [60; 70) [70; 80) |
25 20 20 15 14 6 |
|
n = 100 |
Câu 5:
Bảng 10 biểu diễn mẫu số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố.
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
Câu 6:
Xét mẫu số liệu ghép nhóm cho bởi Bảng 5.
Nhóm |
Tần số |
Tần số tích lũy |
[160; 163) [163; 166) [166; 169) [169; 172) [172; 175) |
6 11 9 7 3 |
6 17 26 33 36 |
|
n = 36 |
|
Bảng 5
a) Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng có đúng không?
Câu 7:
Bảng 1 là bảng tần số ghép nhóm biểu diễn mẫu số liệu ghi lại năng suất lúa (đơn vị: tạ/ha) của 60 địa phương.
Nhóm |
Tần số |
[40; 47) [47; 54) [54; 61) [61; 68) [68; 75) |
1 6 21 21 11 |
|
n = 60 |
Bảng 1
Khoảng biến thiên của mẫu số liệu ghép nhóm được xác định như thế nào?
về câu hỏi!