Câu hỏi:
13/07/2024 4,958
Tính phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm cho ở Bảng 17 (làm tròn kết quả đến hàng phần mười).
Nhóm
Tần số
[50; 60)
[60; 70)
[70; 80)
[80; 90)
[90; 100)
6
12
7
8
7
n = 40
Bảng 17
Tính phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm cho ở Bảng 17 (làm tròn kết quả đến hàng phần mười).
Nhóm |
Tần số |
[50; 60) [60; 70) [70; 80) [80; 90) [90; 100) |
6 12 7 8 7 |
|
n = 40 |
Bảng 17
Quảng cáo
Trả lời:
Từ Bảng 17 ta có bảng thống kê sau:
Nhóm |
Giá trị đại diện |
Tần số |
[50; 60) [60; 70) [70; 80) [80; 90) [90; 100) |
55 65 75 85 95 |
6 12 7 8 7 |
|
|
n = 40 |
Số trung bình cộng của mẫu số liệu ghép nhóm trên là:
.
Vậy phương sai của của mẫu số liệu ghép nhóm trên là:
∙ [6 ∙ (55 – 74,5)2 + 12 ∙ (65 – 74,5)2 + 7 ∙ (75 – 74,5)2
+ 8 ∙ (85 – 74,5)2 + 7 ∙ (95 – 74,5)2] = ≈ 179,8.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đáp án đúng là: B
Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 18 là:
(chục nghìn đồng).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 18 là:
∙ [4 ∙ (42,5 – 53,2)2 + 14 ∙ (47,5 – 53,2)2 + 8 ∙ (52,5 – 53,2)2 + 10 ∙ (57,5 – 53,2)2
+ 6 ∙ (62,5 – 53,2)2 + 2 ∙ (67,5 – 53,2)2] = ≈ 46,1.
Lời giải
Sau bài học này, ta giải quyết bài toán trên như sau:
Để kiểm tra xem kết quả nhảy xa của vận động viên nào đồng đều hơn, ta cần tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của từng vận động viên và so sánh.
Từ Bảng 11 và Bảng 12, ta có các bảng thống kê sau:
Nhóm |
Giá trị đại diện |
Tần số |
|
Nhóm |
Giá trị đại diện |
Tần số |
[6,22; 6,46) [6,46; 6,70) [6,70; 6,94) [6,94; 7,18) [7,18; 7,42) |
6,34 6,58 6,82 7,06 7,30 |
3 7 5 20 5 |
|
[6,22; 6,46) [6,46; 6,70) [6,70; 6,94) [6,94; 7,18) [7,18; 7,42) |
6,34 6,58 6,82 7,06 7,30 |
2 5 8 19 6 |
|
|
n = 40 |
|
|
|
n = 40 |
Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng là:
(m).
Vậy phương sai của của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng là:
∙ [3 ∙ (6,34 – 6,92)2 + 7 ∙ (6,58 – 6,92)2 + 5 ∙ (6,82 – 6,92)2
+ 20 ∙ (7,06 – 6,92)2 + 5 ∙ (7,30 – 6,92)2] = ≈ 0,07.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (m).
Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy là:
(m).
Vậy phương sai của của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy là:
∙ [2 ∙ (6,34 – 6,95)2 + 5 ∙ (6,58 – 6,95)2 + 8 ∙ (6,82 – 6,95)2
+ 19 ∙ (7,06 – 6,95)2 + 6 ∙ (7,30 – 6,95)2] = ≈ 0,06.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (m).
Do sH ≈ 0,24 < sD ≈ 0,26 nên kết quả nhảy xa của vận động viên Huy đồng đều hơn kết quả nhảy xa của vận động viên Dũng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.