Câu hỏi:
13/07/2024 7,544
Bảng 19, Bảng 20 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A, B (đơn vị: triệu đồng).
Nhóm
Giá trị đại diện
Tần số
Nhóm
Giá trị đại diện
Tần số
[10; 15)
[15; 20)
[20; 25)
[25; 30)
[30; 35)
[35; 40)
12,5
17,5
22,5
27,5
32,5
37,5
15
18
10
10
5
2
[10; 15)
[15; 20)
[20; 25)
[25; 30)
[30; 35)
[35; 40)
12,5
17,5
22,5
27,5
32,5
37,5
25
15
7
5
5
3
n = 60
n = 60
Bảng 19 Bảng 20
a) Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm lần lượt biểu diễn mức lương của hai công ty A, B.
Bảng 19, Bảng 20 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A, B (đơn vị: triệu đồng).
Nhóm |
Giá trị đại diện |
Tần số |
|
Nhóm |
Giá trị đại diện |
Tần số |
[10; 15) [15; 20) [20; 25) [25; 30) [30; 35) [35; 40) |
12,5 17,5 22,5 27,5 32,5 37,5 |
15 18 10 10 5 2 |
|
[10; 15) [15; 20) [20; 25) [25; 30) [30; 35) [35; 40) |
12,5 17,5 22,5 27,5 32,5 37,5 |
25 15 7 5 5 3 |
|
|
n = 60 |
|
|
|
n = 60 |
Bảng 19 Bảng 20
a) Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm lần lượt biểu diễn mức lương của hai công ty A, B.
Quảng cáo
Trả lời:
a) Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn mức lương của công ty A được cho bởi Bảng 19 là:
(triệu đồng).
Vậy phương sai của của mẫu số liệu ghép nhóm biểu diễn mức lương của công ty A được cho bởi Bảng 19 là:
∙ [15 ∙ (12,5 – 20,67)2 + 18 ∙ (17,5 – 20,67)2 + 10 ∙ (22,5 – 20,67)2
+ 10 ∙ (27,5 – 20,67)2 + 5 ∙ (32,5 – 20,67)2 + 2 ∙ (37,5 – 20,67)2] = ≈ 49,14.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (triệu đồng).
Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn mức lương của công ty B được cho bởi Bảng 20 là:
(triệu đồng).
Vậy phương sai của của mẫu số liệu ghép nhóm biểu diễn mức lương của công ty B được cho bởi Bảng 20 là:
∙ [25 ∙ (12,5 – 17,46)2 + 15 ∙ (17,5 – 17,46)2 + 7 ∙ (22,5 – 17,46)2
+ 5 ∙ (27,5 – 17,46)2 + 5 ∙ (32,5 – 17,46)2 + 3 ∙ (37,5 – 17,46)2] = ≈ 60,54.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (triệu đồng).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đáp án đúng là: B
Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 18 là:
(chục nghìn đồng).
Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 18 là:
∙ [4 ∙ (42,5 – 53,2)2 + 14 ∙ (47,5 – 53,2)2 + 8 ∙ (52,5 – 53,2)2 + 10 ∙ (57,5 – 53,2)2
+ 6 ∙ (62,5 – 53,2)2 + 2 ∙ (67,5 – 53,2)2] = ≈ 46,1.
Lời giải
Sau bài học này, ta giải quyết bài toán trên như sau:
Để kiểm tra xem kết quả nhảy xa của vận động viên nào đồng đều hơn, ta cần tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của từng vận động viên và so sánh.
Từ Bảng 11 và Bảng 12, ta có các bảng thống kê sau:
Nhóm |
Giá trị đại diện |
Tần số |
|
Nhóm |
Giá trị đại diện |
Tần số |
[6,22; 6,46) [6,46; 6,70) [6,70; 6,94) [6,94; 7,18) [7,18; 7,42) |
6,34 6,58 6,82 7,06 7,30 |
3 7 5 20 5 |
|
[6,22; 6,46) [6,46; 6,70) [6,70; 6,94) [6,94; 7,18) [7,18; 7,42) |
6,34 6,58 6,82 7,06 7,30 |
2 5 8 19 6 |
|
|
n = 40 |
|
|
|
n = 40 |
Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng là:
(m).
Vậy phương sai của của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Dũng là:
∙ [3 ∙ (6,34 – 6,92)2 + 7 ∙ (6,58 – 6,92)2 + 5 ∙ (6,82 – 6,92)2
+ 20 ∙ (7,06 – 6,92)2 + 5 ∙ (7,30 – 6,92)2] = ≈ 0,07.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (m).
Số trung bình cộng của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy là:
(m).
Vậy phương sai của của mẫu số liệu ghép nhóm biểu diễn kết quả 40 lần nhảy xa của vận động viên Huy là:
∙ [2 ∙ (6,34 – 6,95)2 + 5 ∙ (6,58 – 6,95)2 + 8 ∙ (6,82 – 6,95)2
+ 19 ∙ (7,06 – 6,95)2 + 6 ∙ (7,30 – 6,95)2] = ≈ 0,06.
Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (m).
Do sH ≈ 0,24 < sD ≈ 0,26 nên kết quả nhảy xa của vận động viên Huy đồng đều hơn kết quả nhảy xa của vận động viên Dũng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.