Câu hỏi:
20/06/2024 812Giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^3} + m{x^2} - 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Yêu cầu bài toán tương đương: \(y' = 4{x^3} - 6m{x^2} + 2mx \ge 0,\,\,\forall x \in \left( {1\,;\,\, + \infty } \right)\)
\( \Leftrightarrow 2x\left( {2{x^2} - 3mx + m} \right) \ge 0\,,\,\,\forall x \in \left( {1\,;\,\, + \infty } \right)\)
\( \Leftrightarrow 2{x^2} - 3mx + m \ge 0\,,\,\,\forall x \in \left( {1\,;\,\, + \infty } \right) \Leftrightarrow 2{x^2} - m\left( {3x - 1} \right) \ge 0\,,\,\,\forall x \in \left( {1\,;\,\, + \infty } \right)\)
\( \Leftrightarrow m \le \frac{{2{x^2}}}{{3x - 1}}\,,\,\,\forall x \in \left( {1\,;\,\, + \infty } \right) \Leftrightarrow m \le {\min _{\left[ {1\,;\,\, + \infty } \right)}}\left( {\frac{{2{x^2}}}{{3x - 1}}} \right)\)
Xét hàm \(f(x) = \frac{{2{x^2}}}{{3x - 1}}\) trên \(\left[ {1\,;\,\, + \infty } \right)\), ta có \(f'\left( x \right) = \frac{{x\left( {6x - 4} \right)}}{{{{\left( {3x - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \frac{2}{3}}\end{array}} \right.\).
Ta có BBT của \(f(x)\) như sau:
Suy ra \(m \le {\min _{\left( {1\,;\,\, + \infty } \right)}}\left( {\frac{{2{x^2}}}{{3x - 1}}} \right) \Leftrightarrow m \le 1.\) Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 3:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 4:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Câu 5:
Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là \[13,5\] triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm \[500\,\,000\] đồng mỗi quý. Tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
về câu hỏi!