Câu hỏi:
20/06/2024 277Ông A dự định sử dụng hết 6,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu mét khối (kết quả làm tròn đến hàng phần trăm)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi chiều dài bể cá là \(2x\,\,(m)\), chiều rộng bể cá là \(x\,\,(m),\)chiều cao bể cá là \(y\,\,(m).\)
Ta có diện tích kính cần làm bể cá là:
\[S = x \cdot 2x + 2 \cdot x \cdot y + 2 \cdot 2x \cdot y = 2{x^2} + 6xy\,\,\left( {{m^2}} \right)\].Mà theo bài cho \(S = 6,5\,\,{m^2}\) nên \(2{x^2} + 6xy = 6,5 \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6}.\)
Thể tích bề cá là \(V = 2x \cdot x \cdot y = 2x \cdot \frac{{6,5 - 2{x^2}}}{6} = \frac{1}{3} \cdot x \cdot \left( {6,5 - 2{x^2}} \right)\).
Ta có \(V' = \frac{1}{3} \cdot \left( {\frac{{13}}{2} - 6{x^2}} \right) = 0 \Leftrightarrow x = \sqrt {\frac{{13}}{{12}}} .\)
Ta có bảng biến thiên như sau:
Từ bảng biến thiên ta thấy thể tích của bể cá lớn nhất tại \(x = \sqrt {\frac{{13}}{{12}}} \)
\( \Rightarrow {V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,503\,\,\left( {\;{{\rm{m}}^3}} \right)\)\( \Rightarrow {V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,503\,\,\left( {\;{{\rm{m}}^3}} \right).\)
Vậy bể cá có dung tích lớn nhất bằng \(1,5\;\,{{\rm{m}}^3}\).
Đáp án: \[{\bf{1}},{\bf{5}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 3:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 4:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Câu 5:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
Câu 7:
Giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^3} + m{x^2} - 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\] là
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!