Câu hỏi:
20/06/2024 1,283Trên mặt phẳng tọa độ Oxy, cho điểm \(A\left( {2\,;\,\,3} \right)\) và đường thẳng \(\left( {{\Delta _m}} \right):\left( {m - 2} \right)x + \left( {m - 1} \right)y + 2m - 1 = 0\) luôn đi qua 1 điểm cố định \(M\left( {1\,;\,\, - 3} \right)\) với \(m\) là tham số thực. Giá trị của \(m\) để khoảng cách từ \(A\) đến đường thẳng \(\left( {{\Delta _m}} \right)\) lớn nhất là
Quảng cáo
Trả lời:
Ta có \(\left( {{\Delta _m}} \right):\left( {m - 2} \right)x + \left( {m - 1} \right)y + 2m - 1 = 0\)
\( \Leftrightarrow mx - 2x + my - y + 2m - 1 = 0\)
\( \Leftrightarrow m\left( {x + y + 2} \right) + \left( { - 2x - y - 1} \right) = 0\) có vô số nghiệm với \(\forall m\).
Khi đó \(\left\{ {\begin{array}{*{20}{l}}{x + y + 2 = 0}\\{ - 2x - y - 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = - 3}\end{array}} \right.} \right.\).
Do đó \(\left( {{\Delta _m}} \right)\) luôn đi qua điểm cố định là \(M\left( {1\,;\,\, - 3} \right)\).
Dựng \(AH \bot {\Delta _m}\), ta có \(AH \le AM\) với mọi \[m.\]
Vậy \[AH\] lớn nhất bằng \[AM\] khi và chỉ khi \(H\) trùng \(M\) hay \(AM \bot {\Delta _m}.\)
Ta có \(\overrightarrow {AM} = \left( { - 1\,;\,\, - 6} \right),\,\,{\Delta _m}\) có vectơ chỉ phương \(\vec u = \left( {1 - m\,;\,\,m - 2} \right).\)
\(AM \bot {\Delta _m} \Leftrightarrow \overrightarrow {AM} \cdot \vec u = 0 \Leftrightarrow - 1\left( {1 - m} \right) - 6\left( {m - 2} \right) = 0 \Leftrightarrow m = \frac{{11}}{5}.\) Chọn D.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số \(f\left( x \right)\) có đúng một điểm cực trị khi và chỉ khi tam thức \(g\left( x \right) = {x^2} + 2mx + 5\) vô nghiệm hoặc có hai nghiệm phân biệt trong đó một nghiệm là \(x = - 1\), hoặc \(g\left( x \right)\) có nghiệm kép.
Tức là \(\left[ {\begin{array}{*{20}{l}}{{{\Delta '}_g} < 0}\\{\left\{ {\begin{array}{*{20}{l}}{g( - 1) = 0}\\{\Delta ' > 0}\end{array}} \right.}\\{{{\Delta '}_g} = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} - 5 < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2m + 6 = 0}\\{{m^2} - 5 > 0}\end{array}} \right.}\\{{m^2} - 5 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - \sqrt 5 \le m \le \sqrt 5 }\\{m = 3}\end{array}} \right.} \right.} \right..\)
Do đó tập các giá trị nguyên thỏa mãn yêu cầu bài toán là \(S = \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}.\)
Đáp án: 6.
Lời giải
Năm 2021 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot \left( {1 - 0,02} \right) = 850 \cdot 0,98\) (triệu đồng).
Năm 2022 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^2}\) (triệu đồng).
Năm 2023 hãng xe ô tô niêm yết giá bán xe X là: \[850 \cdot 0,{98^3}\] (triệu đồng).
Năm 2024 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^4}\) (triệu đồng).
Năm 2025 hãng xe ô tô niêm yết giá bán xe X là:
\(850 \cdot 0,{98^5} = 768,3326 \approx 768,333\) (triệu đồng).
Vậy 2025 hãng xe ô tô niêm yết giá bán xe X là \[768\,\,333\,\,000\] đồng. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.