Câu hỏi:
20/06/2024 885Trên mặt phẳng tọa độ Oxy, cho điểm \(A\left( {2\,;\,\,3} \right)\) và đường thẳng \(\left( {{\Delta _m}} \right):\left( {m - 2} \right)x + \left( {m - 1} \right)y + 2m - 1 = 0\) luôn đi qua 1 điểm cố định \(M\left( {1\,;\,\, - 3} \right)\) với \(m\) là tham số thực. Giá trị của \(m\) để khoảng cách từ \(A\) đến đường thẳng \(\left( {{\Delta _m}} \right)\) lớn nhất là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Ta có \(\left( {{\Delta _m}} \right):\left( {m - 2} \right)x + \left( {m - 1} \right)y + 2m - 1 = 0\)
\( \Leftrightarrow mx - 2x + my - y + 2m - 1 = 0\)
\( \Leftrightarrow m\left( {x + y + 2} \right) + \left( { - 2x - y - 1} \right) = 0\) có vô số nghiệm với \(\forall m\).
Khi đó \(\left\{ {\begin{array}{*{20}{l}}{x + y + 2 = 0}\\{ - 2x - y - 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = - 3}\end{array}} \right.} \right.\).
Do đó \(\left( {{\Delta _m}} \right)\) luôn đi qua điểm cố định là \(M\left( {1\,;\,\, - 3} \right)\).
Dựng \(AH \bot {\Delta _m}\), ta có \(AH \le AM\) với mọi \[m.\]
Vậy \[AH\] lớn nhất bằng \[AM\] khi và chỉ khi \(H\) trùng \(M\) hay \(AM \bot {\Delta _m}.\)
Ta có \(\overrightarrow {AM} = \left( { - 1\,;\,\, - 6} \right),\,\,{\Delta _m}\) có vectơ chỉ phương \(\vec u = \left( {1 - m\,;\,\,m - 2} \right).\)
\(AM \bot {\Delta _m} \Leftrightarrow \overrightarrow {AM} \cdot \vec u = 0 \Leftrightarrow - 1\left( {1 - m} \right) - 6\left( {m - 2} \right) = 0 \Leftrightarrow m = \frac{{11}}{5}.\) Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 2:
Năm 2020, một hãng xe ô tô niêm yết giá bán loại xe X là \[850\,\,000\,\,000\] đồng và dự định trong 10 năm tiếp theo, mỗi năm giảm \[2\% \] giá bán của năm liền trước. Theo dự định đó, năm 2025 hãng xe ô tô niêm yết giá bán xe X là bao nhiêu (kết quả làm tròn đến hàng nghìn)?
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
Câu 4:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 6:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 7:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận