Câu hỏi:

20/06/2024 197 Lưu

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác đều, \(SA \bot \left( {ABC} \right).\) Mặt phẳng \(\left( {SBC} \right)\) cách \(A\) một khoảng bằng \(a\) và hợp với mặt phẳng \(\left( {ABC} \right)\) góc \(30^\circ .\) Thể tích của khối chóp \[S.ABC\] bằng

A. \(\frac{{8{a^3}}}{9}.\)                                
B. \(\frac{{8{a^3}}}{3}.\)    
C. \(\frac{{\sqrt 3 {a^3}}}{{12}}.\)     
D. \(\frac{{4{a^3}}}{9}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Gọi \(I\) là trung điểm của BC suy ra góc giữa \(mp\left( {SBC} \right)\) và \(mp\left( {ABC} \right)\) là \[\widehat {SIA} = 30^\circ .\]

\(H\) là hình chiếu vuông góc của \(A\) trên SI suy ra \[d\left( {A,\,\,\left( {SBC} \right)} \right) = AH = a.\]

Xét tam giác \[AHI\] vuông tại \(H\) suy ra \(AI = \frac{{AH}}{{\sin 30^\circ }} = 2a.\)

Giả sử tam giác đều \[ABC\] có cạnh bằng \[x.\]

Mà \[AI\] là đường cao suy ra \(2a = x\frac{{\sqrt 3 }}{2} \Rightarrow x = \frac{{4a}}{{\sqrt 3 }}.\)

Diện tích tam giác đều \[ABC\] là \({S_{ABC}} = {\left( {\frac{{4a}}{{\sqrt 3 }}} \right)^2} \cdot \frac{{\sqrt 3 }}{4} = \frac{{4{a^2}\sqrt 3 }}{3}.\)

Xét tam giác \[SAI\] vuông tại \(A\) suy ra \(SA = AI \cdot \tan 30^\circ  = \frac{{2a}}{{\sqrt 3 }}.\)

Vậy \({V_{S.ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{1}{3} \cdot \frac{{4{a^2}\sqrt 3 }}{3} \cdot \frac{{2a}}{{\sqrt 3 }} = \frac{{8{a^3}}}{9}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số \(f\left( x \right)\) có đúng một điểm cực trị khi và chỉ khi tam thức \(g\left( x \right) = {x^2} + 2mx + 5\) vô nghiệm hoặc có hai nghiệm phân biệt trong đó một nghiệm là \(x =  - 1\), hoặc \(g\left( x \right)\) có nghiệm kép.

Tức là \(\left[ {\begin{array}{*{20}{l}}{{{\Delta '}_g} < 0}\\{\left\{ {\begin{array}{*{20}{l}}{g( - 1) = 0}\\{\Delta ' > 0}\end{array}} \right.}\\{{{\Delta '}_g} = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} - 5 < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2m + 6 = 0}\\{{m^2} - 5 > 0}\end{array}} \right.}\\{{m^2} - 5 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - \sqrt 5  \le m \le \sqrt 5 }\\{m = 3}\end{array}} \right.} \right.} \right..\)

Do đó tập các giá trị nguyên thỏa mãn yêu cầu bài toán là \(S = \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}.\)

Đáp án: 6.

Lời giải

Năm 2021 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot \left( {1 - 0,02} \right) = 850 \cdot 0,98\) (triệu đồng).

Năm 2022 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^2}\) (triệu đồng).

Năm 2023 hãng xe ô tô niêm yết giá bán xe X là: \[850 \cdot 0,{98^3}\] (triệu đồng).

Năm 2024 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^4}\) (triệu đồng).

Năm 2025 hãng xe ô tô niêm yết giá bán xe X là:

\(850 \cdot 0,{98^5} = 768,3326 \approx 768,333\) (triệu đồng).

Vậy 2025 hãng xe ô tô niêm yết giá bán xe X là \[768\,\,333\,\,000\] đồng. Chọn A.

Câu 4

A. \(\frac{9}{2}.\)        
B. 3.                              
C. 6.     
D. \(\frac{9}{4}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. các sông lớn bồi đắp nhiều phù sa. 
B. trầm tích biển tạo bồi lấp các đứt gãy. 
C. dung nham núi lửa từ nơi cao xuống.
D. xâm thực vùng núi, bồi đắp vùng trũng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {5\,;\,\,9} \right).\]                              
B. \(\left( {1\,;\,\,2} \right).\)                             
C. \(\left( { - \infty \,;\,\,9} \right).\)     
D. \(\left( {1\,;\,\,3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP