Câu hỏi:

20/06/2024 79

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác đều, \(SA \bot \left( {ABC} \right).\) Mặt phẳng \(\left( {SBC} \right)\) cách \(A\) một khoảng bằng \(a\) và hợp với mặt phẳng \(\left( {ABC} \right)\) góc \(30^\circ .\) Thể tích của khối chóp \[S.ABC\] bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \(I\) là trung điểm của BC suy ra góc giữa \(mp\left( {SBC} \right)\) và \(mp\left( {ABC} \right)\) là \[\widehat {SIA} = 30^\circ .\]

\(H\) là hình chiếu vuông góc của \(A\) trên SI suy ra \[d\left( {A,\,\,\left( {SBC} \right)} \right) = AH = a.\]

Xét tam giác \[AHI\] vuông tại \(H\) suy ra \(AI = \frac{{AH}}{{\sin 30^\circ }} = 2a.\)

Giả sử tam giác đều \[ABC\] có cạnh bằng \[x.\]

Mà \[AI\] là đường cao suy ra \(2a = x\frac{{\sqrt 3 }}{2} \Rightarrow x = \frac{{4a}}{{\sqrt 3 }}.\)

Diện tích tam giác đều \[ABC\] là \({S_{ABC}} = {\left( {\frac{{4a}}{{\sqrt 3 }}} \right)^2} \cdot \frac{{\sqrt 3 }}{4} = \frac{{4{a^2}\sqrt 3 }}{3}.\)

Xét tam giác \[SAI\] vuông tại \(A\) suy ra \(SA = AI \cdot \tan 30^\circ  = \frac{{2a}}{{\sqrt 3 }}.\)

Vậy \({V_{S.ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{1}{3} \cdot \frac{{4{a^2}\sqrt 3 }}{3} \cdot \frac{{2a}}{{\sqrt 3 }} = \frac{{8{a^3}}}{9}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?

Xem đáp án » 20/06/2024 8,346

Câu 2:

Đông Nam Á lục địa có nhiều đồng bằng phù sa màu mỡ là do 

Xem đáp án » 02/07/2024 2,702

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng

Xem đáp án » 20/06/2024 1,971

Câu 4:

Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng

Xem đáp án » 20/06/2024 1,435

Câu 5:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 20/06/2024 1,409

Câu 6:

Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x =  - 2\) bằng

Xem đáp án » 20/06/2024 1,316

Câu 7:

Năm 2020, một hãng xe ô tô niêm yết giá bán loại xe X là \[850\,\,000\,\,000\] đồng và dự định trong 10 năm tiếp theo, mỗi năm giảm \[2\% \] giá bán của năm liền trước. Theo dự định đó, năm 2025 hãng xe ô tô niêm yết giá bán xe X là bao nhiêu (kết quả làm tròn đến hàng nghìn)?

Xem đáp án » 20/06/2024 1,211

Bình luận


Bình luận