Câu hỏi:
20/06/2024 152Trong không gian \[Oxyz,\] cho hình thang cân \[ABCD\] có hai đáy \[AB,\,\,CD\] thỏa mãn \(CD = 2AB\) và diện tích bằng 27, đỉnh \(A\left( { - 1\,;\,\, - 1\,;\,\,0} \right)\), phương trình đường thẳng chứa cạnh \[CD\] là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}.\) Biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \[A,\] tọa độ điểm \(D\) là
Quảng cáo
Trả lời:
Gọi điểm \(H\) là hình chiếu vuông góc của \(A\) lên đường thẳng \[CD\].
Khi đó \(H\left( {2 + 2t\,;\,\, - 1 + 2t\,;\,\,3 + t} \right)\)
\( \Rightarrow \overrightarrow {AH} \left( {3 + 2t\,;\,\,2t\,;\,\,3 + t} \right).\)
Đường thẳng CD có VTCP là \(\vec u\left( {2\,;\,\,2\,;\,\,1} \right).\)
\( \Rightarrow 2\left( {3 + 2t} \right) + 2 \cdot 2t + 3 + t = 0 \Leftrightarrow t = - 1 \Rightarrow H\left( {0\,;\,\, - 3\,;\,\,2} \right) \Rightarrow AH = 3.\)
Đường thẳng \[AB\] đi qua \(A\) và song song với \(CD\) nên phương trình AB là: \(\frac{{x + 1}}{2} = \frac{{y + 1}}{2} = \frac{z}{1} = k.\)
\(B \in AB \Rightarrow B\left( { - 1 + 2k\,;\,\, - 1 + 2k\,;\,\,k} \right) \Rightarrow \overrightarrow {AB} \left( {2k\,;\,\,2k\,;\,\,k} \right)\).
Theo bài ra ta có: \({S_{ABCD}} = \frac{{AB + CD}}{2} \cdot AH \Leftrightarrow \frac{{AB + 2AB}}{2} \cdot 3 = 27 \Leftrightarrow AB = 6 \Rightarrow k = \pm \,2.\)
• Với \(k = - 2 \Rightarrow B\left( { - 5\,;\,\, - 5\,;\,\, - 2} \right)\) (loại vì hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A).\)
• Với \(k = 2 \Rightarrow B\left( {3\,;\,\,3\,;\,\,2} \right)\) (thỏa mãn).
Ta có: \(DH = 3\,;\,\,2\overrightarrow {DH} = \overrightarrow {AB} \Rightarrow D\left( { - 2\,;\,\, - 5\,;\,\,1} \right).\) Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số \(f\left( x \right)\) có đúng một điểm cực trị khi và chỉ khi tam thức \(g\left( x \right) = {x^2} + 2mx + 5\) vô nghiệm hoặc có hai nghiệm phân biệt trong đó một nghiệm là \(x = - 1\), hoặc \(g\left( x \right)\) có nghiệm kép.
Tức là \(\left[ {\begin{array}{*{20}{l}}{{{\Delta '}_g} < 0}\\{\left\{ {\begin{array}{*{20}{l}}{g( - 1) = 0}\\{\Delta ' > 0}\end{array}} \right.}\\{{{\Delta '}_g} = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} - 5 < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2m + 6 = 0}\\{{m^2} - 5 > 0}\end{array}} \right.}\\{{m^2} - 5 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - \sqrt 5 \le m \le \sqrt 5 }\\{m = 3}\end{array}} \right.} \right.} \right..\)
Do đó tập các giá trị nguyên thỏa mãn yêu cầu bài toán là \(S = \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}.\)
Đáp án: 6.
Lời giải
Năm 2021 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot \left( {1 - 0,02} \right) = 850 \cdot 0,98\) (triệu đồng).
Năm 2022 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^2}\) (triệu đồng).
Năm 2023 hãng xe ô tô niêm yết giá bán xe X là: \[850 \cdot 0,{98^3}\] (triệu đồng).
Năm 2024 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^4}\) (triệu đồng).
Năm 2025 hãng xe ô tô niêm yết giá bán xe X là:
\(850 \cdot 0,{98^5} = 768,3326 \approx 768,333\) (triệu đồng).
Vậy 2025 hãng xe ô tô niêm yết giá bán xe X là \[768\,\,333\,\,000\] đồng. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận