Câu hỏi:

20/06/2024 159

Trong không gian \[Oxyz,\] cho hình thang cân \[ABCD\] có hai đáy \[AB,\,\,CD\] thỏa mãn \(CD = 2AB\) và diện tích bằng 27, đỉnh \(A\left( { - 1\,;\,\, - 1\,;\,\,0} \right)\), phương trình đường thẳng chứa cạnh \[CD\] là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}.\) Biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \[A,\] tọa độ điểm \(D\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi điểm \(H\) là hình chiếu vuông góc của \(A\) lên đường thẳng \[CD\].

Khi đó \(H\left( {2 + 2t\,;\,\, - 1 + 2t\,;\,\,3 + t} \right)\)

\( \Rightarrow \overrightarrow {AH} \left( {3 + 2t\,;\,\,2t\,;\,\,3 + t} \right).\)

Đường thẳng CD có VTCP là \(\vec u\left( {2\,;\,\,2\,;\,\,1} \right).\)

Ta có: \(\overrightarrow {AH}  \bot \vec u \Rightarrow \overrightarrow {AH}  \cdot \vec u = 0\)

\( \Rightarrow 2\left( {3 + 2t} \right) + 2 \cdot 2t + 3 + t = 0 \Leftrightarrow t =  - 1 \Rightarrow H\left( {0\,;\,\, - 3\,;\,\,2} \right) \Rightarrow AH = 3.\)

Đường thẳng \[AB\] đi qua \(A\) và song song với \(CD\) nên phương trình AB là: \(\frac{{x + 1}}{2} = \frac{{y + 1}}{2} = \frac{z}{1} = k.\)

\(B \in AB \Rightarrow B\left( { - 1 + 2k\,;\,\, - 1 + 2k\,;\,\,k} \right) \Rightarrow \overrightarrow {AB} \left( {2k\,;\,\,2k\,;\,\,k} \right)\).

Theo bài ra ta có: \({S_{ABCD}} = \frac{{AB + CD}}{2} \cdot AH \Leftrightarrow \frac{{AB + 2AB}}{2} \cdot 3 = 27 \Leftrightarrow AB = 6 \Rightarrow k =  \pm \,2.\)

• Với \(k =  - 2 \Rightarrow B\left( { - 5\,;\,\, - 5\,;\,\, - 2} \right)\) (loại vì hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A).\)

• Với \(k = 2 \Rightarrow B\left( {3\,;\,\,3\,;\,\,2} \right)\) (thỏa mãn).

Ta có: \(DH = 3\,;\,\,2\overrightarrow {DH}  = \overrightarrow {AB}  \Rightarrow D\left( { - 2\,;\,\, - 5\,;\,\,1} \right).\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số \(f\left( x \right)\) có đúng một điểm cực trị khi và chỉ khi tam thức \(g\left( x \right) = {x^2} + 2mx + 5\) vô nghiệm hoặc có hai nghiệm phân biệt trong đó một nghiệm là \(x =  - 1\), hoặc \(g\left( x \right)\) có nghiệm kép.

Tức là \(\left[ {\begin{array}{*{20}{l}}{{{\Delta '}_g} < 0}\\{\left\{ {\begin{array}{*{20}{l}}{g( - 1) = 0}\\{\Delta ' > 0}\end{array}} \right.}\\{{{\Delta '}_g} = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} - 5 < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2m + 6 = 0}\\{{m^2} - 5 > 0}\end{array}} \right.}\\{{m^2} - 5 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - \sqrt 5  \le m \le \sqrt 5 }\\{m = 3}\end{array}} \right.} \right.} \right..\)

Do đó tập các giá trị nguyên thỏa mãn yêu cầu bài toán là \(S = \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}.\)

Đáp án: 6.

Lời giải

Năm 2021 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot \left( {1 - 0,02} \right) = 850 \cdot 0,98\) (triệu đồng).

Năm 2022 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^2}\) (triệu đồng).

Năm 2023 hãng xe ô tô niêm yết giá bán xe X là: \[850 \cdot 0,{98^3}\] (triệu đồng).

Năm 2024 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^4}\) (triệu đồng).

Năm 2025 hãng xe ô tô niêm yết giá bán xe X là:

\(850 \cdot 0,{98^5} = 768,3326 \approx 768,333\) (triệu đồng).

Vậy 2025 hãng xe ô tô niêm yết giá bán xe X là \[768\,\,333\,\,000\] đồng. Chọn A.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP