Câu hỏi:
20/06/2024 55Cho đa thức \(f\left( x \right)\) thoả mãn \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 20}}{{x - 2}} = 10.\) Tính \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{6f\left( x \right) + 5}} - 5}}{{{x^2} + x - 6}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 20}}{{x - 2}} = 10 \Rightarrow f\left( 2 \right) - 20 = 0 \Leftrightarrow f\left( 2 \right) = 20\).
Lại có \(\frac{{\sqrt[3]{{6f\left( x \right) + 5}} - 5}}{{{x^2} + x - 6}} = \frac{{6f\left( x \right) + 5 - 125}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {{{\sqrt[3]{{6f\left( x \right) + 5}}}^2} + \sqrt[3]{{6f\left( x \right) + 5}} \cdot 5 + {5^2}} \right]}}\)
\[ = \frac{{6\left[ {f\left( x \right) + 20} \right]}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left[ {\sqrt[3]{{6f\left( x \right) + {5^2}}} + \sqrt[3]{{6f(x) + 5}}.5 + {5^2}} \right]}}\]
\( = 6 \cdot \frac{{f\left( x \right) + 20}}{{x - 2}} \cdot \frac{1}{{\left( {x + 3} \right)\left[ {{{\sqrt[3]{{6f\left( x \right) + 5}}}^2} + \sqrt[3]{{6f\left( x \right) + 5}} \cdot 5 + {5^2}} \right]}}\)
Suy ra \(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{6f(x) + 5}} - 5}}{{{x^2} + x - 6}} = \mathop {\lim }\limits_{x \to 2} \left( {6.\frac{{f\left( x \right) + 20}}{{x - 2}} \cdot \frac{1}{{(x + 3)\left[ {\sqrt[3]{{6f\left( x \right) + 5}} + \sqrt[3]{{6f\left( x \right) + 5}} \cdot 5 + {5^2}} \right]}}} \right)\)
=6. \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 20}}{{x - 2}}.\mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {x + 3} \right)\left[ {\sqrt[3]{{6f\left( x \right) + 5}} + \sqrt[3]{{6f\left( x \right) + 5}} \cdot 5 + {5^2}} \right]}}\)
Điền đáp án \(\frac{4}{{25}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?
Câu 2:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 3:
Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng
Câu 4:
Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x = - 2\) bằng
Câu 5:
Giá trị của tham số \(m\) để hàm số \(y = {x^4} - 2m{x^3} + m{x^2} - 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\] là
Câu 6:
Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là \[13,5\] triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm \[500\,\,000\] đồng mỗi quý. Tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng
về câu hỏi!