Câu hỏi:

20/06/2024 4,286

Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tọa độ điểm \(A\) là nghiệm của hệ phương trình

\(\left\{ {\begin{array}{*{20}{l}}{2x + y + 7 = 0}\\{x - 4y - 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x =  - 3}\\{y =  - 1}\end{array}} \right.} \right.{\rm{. }}\)Suy ra \(A( - 3; - 1).\)

Vì \[ABCD\] là hình bình hành nên \(I\) là trung điểm của \[AC.\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x_I} = \frac{{{x_A} + {x_C}}}{2}}\\{{y_I} = \frac{{{y_A} + {y_C}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 = \frac{{ - 3 + {x_C}}}{2}}\\{2 = \frac{{ - 1 + {y_C}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_C} = 5}\\{{y_C} = 5}\end{array}} \right.} \right.} \right.\)\[ \Rightarrow C\left( {5\,;\,\,5} \right).\]

Đường thẳng \[BC\] song song với đường thẳng \[AD.\]

Do đó phương trình đường thẳng BC có dạng: \(x - 4y + c = 0\) với \(c \ne  - 1.\)

Vì \[C\left( {5\,;\,\,5} \right)\] thuộc đường thẳng BC nên \(5 - 4 \cdot 5 + c = 0 \Leftrightarrow c = 15.\)

Vậy phương trình đường thẳng BC là: \(x - 4y + 15 = 0.\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận lớn nhất.

Gọi \(F\left( x \right)\) là hàm chỉ số tiền thu được sau mỗi chuyến xe \(\left( {0 < x \le 60\,,\,\,x \in \mathbb{N}} \right).\)

Số tiền thu được sau mỗi chuyến xe:

\(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2} \cdot x = 90\,\,000x - 1500{x^2} + \frac{{25}}{4}{x^3}\).

Bài toán trở thành tìm \(x\) để \(F(x)\) đạt giá trị lớn nhất thì \(F'\left( x \right) = 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2}\)

\(F'\left( x \right) = 0 \Leftrightarrow 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 120}&{(L)}\\{x = 40}&{(TM)}\end{array}.} \right.\)

Bảng biến thiên:

Media VietJack

Vậy để thu được lợi nhuận của mỗi chuyến xe là lớn nhất thì mỗi chuyến xe phải chở 40 người.

Câu 2

Lời giải

Gọi \(H\) là hình chiếu vuông góc của \(A\left( {2\,;\,\, - 3\,;\,\,5} \right)\) lên \[Oy.\]

Suy ra \(H\left( {0\,;\,\, - 3\,;\,\,0} \right).\) Khi đó \(H\) là trung điểm đoạn \(AA'.\)

Do đó \[\left\{ {\begin{array}{*{20}{l}}{{x_H} = \frac{{{x_A} + {x_{A'}}}}{2}}\\{{y_H} = \frac{{{y_A} + {y_{A'}}}}{2}}\\{{z_H} = \frac{{{z_A} + {z_{A'}}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_{A'}} = 2{x_H} - {x_A} = 2 \cdot 0 - 2 =  - 2}\\{{y_{A'}} = 2{y_H} - {y_A} = 2 \cdot \left( { - 3} \right) - ( - 3) =  - 3}\\{{z_{A'}} = 2{z_H} - {z_A} = 2 \cdot 0 - 5 =  - 5}\end{array}} \right.} \right.\].

\[ \Rightarrow A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\] Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP