Câu hỏi:

11/07/2024 1,096

Xét phép thử lấy thẻ ở Ví dụ 1. Gọi D là biến cố “Thẻ lấy ra lần thứ hai ghi số lớn hơn 1”. Tính P(D|A) và P(D|B).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Không gian mẫu của phép thử:

W = {(1; 2), (1; 3), (2; 1), (2; 3), (3; 1), (3; 2)}.

Tập hợp các kết quả thuận lợi cho biến cố A là {(1; 2), (1; 3)}.

Tập hợp các  kết quả thuận lợi cho biến cố B là {(2; 1), (2; 3)}.

Tính P(D|A).

Ta thấy khi biến cố A xảy ra thì kết quả của phép thử là (1; 2) hoặc (1; 3). Đây đều là các kết quả thuận lợi cho biến cố D. Do đó P(D|A) = 1.

Tính P(D|B)

Ta thấy khi biến cố B xảy ra thì kết quả của phép thử là (2; 1) hoặc (2; 3). Trong hai kết quả này thì có một kết quả thuận lợi cho biến cố D. Do đó PD|B=12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,2\).

Theo công thức nhân xác suất ta có: \(P\left( {A\overline B } \right) = P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,2.0,5 = 0,1\).

\(A\overline B \)\(AB\) là hai biến cố xung khắc và \(A\overline B \cup AB = A\).

Suy ra \(P(AB) = P(A) - P\left( {A\overline B } \right) = 0,4 - 0,1 = 0,3\).

Do đó \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P(B)}} = \frac{{0,3}}{{0,8}} = \frac{3}{8}\) .

Lời giải

Gọi M là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”,

N là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.

Ta có \(P(M) = \frac{4}{{10}} = \frac{2}{5} = 0,4\); \(P(N|M) = \frac{4}{{10}} = \frac{2}{5} = 0,4\);

Suy ra \(P\left( {\overline M } \right) = 1 - P\left( M \right) = 0,6\); \(P\left( {N|\overline M } \right) = \frac{5}{{10}} = 0,5\); \(P\left( {\overline N |M} \right) = \frac{6}{{10}} = 0,6\);

\(P\left( {\overline N |\overline M } \right) = \frac{5}{{10}} = 0,5\)

Ta có sơ đồ cây

Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. (ảnh 1)

Dựa vào sơ đồ cây ta có P(A) = 0,16; P(B) = 0,24 + 0,3 = 0,54.