Mỗi bạn học sinh trong lớp của Minh lựa chọn học một trong hai ngoại ngữ là tiếng Anh hoặc tiếng Nhật. Xác suất chọn tiếng Anh của mỗi bạn học sinh nữ là 0,6 và của mỗi bạn học sinh nam là 0,7. Lớp Minh có 25 bạn nữ và 20 bạn nam. Chọn ra ngẫu nhiên một bạn trong lớp.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
A: “Bạn được chọn là nam và học tiếng Nhật”;
B: “Bạn được chọn là nữ và học tiếng Anh”.
Mỗi bạn học sinh trong lớp của Minh lựa chọn học một trong hai ngoại ngữ là tiếng Anh hoặc tiếng Nhật. Xác suất chọn tiếng Anh của mỗi bạn học sinh nữ là 0,6 và của mỗi bạn học sinh nam là 0,7. Lớp Minh có 25 bạn nữ và 20 bạn nam. Chọn ra ngẫu nhiên một bạn trong lớp.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
A: “Bạn được chọn là nam và học tiếng Nhật”;
B: “Bạn được chọn là nữ và học tiếng Anh”.
Quảng cáo
Trả lời:
Gọi M là biến cố “Bạn được chọn là nữ”;
N là biến cố “Bạn được chọn học tiếng Anh”.
Ta có \(P(M) = \frac{{C_{25}^1}}{{C_{45}^1}} = \frac{5}{9}\); \(P\left( {N|M} \right) = 0,6;P(N|\overline M ) = 0,7\).
Suy ra \(P\left( {\overline M } \right) = 1 - P\left( M \right) = \frac{4}{9};\)\(P\left( {\overline N |M} \right) = 1 - P\left( {N|M} \right) = 0,4\);
\(P\left( {\overline N |\overline M } \right) = 1 - P\left( {N|\overline M } \right) = 0,3\).
Ta có sơ đồ hình cây

Dựa vào sơ đồ hình cây, ta có: \(P\left( A \right) = \frac{2}{{15}}\); \(P\left( B \right) = \frac{1}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,2\).
Theo công thức nhân xác suất ta có: \(P\left( {A\overline B } \right) = P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,2.0,5 = 0,1\).
Vì \(A\overline B \) và \(AB\) là hai biến cố xung khắc và \(A\overline B \cup AB = A\).
Suy ra \(P(AB) = P(A) - P\left( {A\overline B } \right) = 0,4 - 0,1 = 0,3\).
Do đó \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P(B)}} = \frac{{0,3}}{{0,8}} = \frac{3}{8}\) .
Lời giải
Gọi M là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”,
N là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.
Ta có \(P(M) = \frac{4}{{10}} = \frac{2}{5} = 0,4\); \(P(N|M) = \frac{4}{{10}} = \frac{2}{5} = 0,4\);
Suy ra \(P\left( {\overline M } \right) = 1 - P\left( M \right) = 0,6\); \(P\left( {N|\overline M } \right) = \frac{5}{{10}} = 0,5\); \(P\left( {\overline N |M} \right) = \frac{6}{{10}} = 0,6\);
\(P\left( {\overline N |\overline M } \right) = \frac{5}{{10}} = 0,5\)
Ta có sơ đồ cây

Dựa vào sơ đồ cây ta có P(A) = 0,16; P(B) = 0,24 + 0,3 = 0,54.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.