Câu hỏi:

25/06/2024 1,143

Trong không gian với hệ tọa độ \[Oxyz,\] cho tam giác \[ABC\] có \(A\left( {1\,;\,\,2\,;\,\, - 1} \right),\,\,B\left( {2\,;\,\, - 1\,;\,\,3} \right),\)\(C\left( { - 4\,;\,\,7\,;\,\,5} \right).\) Gọi \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) là chân đường phân giác trong góc \[B\] của tam giác \[ABC.\] Giá trị của \(a + b + 2c\) bằng

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(AB = \sqrt {26} \,,\,\,BC = \sqrt {104}  = 2\sqrt {26} .\)

Gọi \[D\left( {x\,;\,\,y\,;\,\,z} \right)\], theo tính chất phân giác ta có \(\frac{{DA}}{{DC}} = \frac{{BA}}{{BC}} = \frac{1}{2}.\)

Suy ra \(\overrightarrow {DA}  =  - \frac{1}{2}\overrightarrow {DC}  & (*).\)

Ta có \(\overrightarrow {DA}  = \left( {1 - x\,;\,\,2 - y\,;\,\, - 1 - z} \right)\) và \(\overrightarrow {DC}  = \left( { - 4 - x\,;\,\,7 - y\,;\,\,5 - z} \right).\)

Do đó \((*) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{1 - x =  - \frac{1}{2}\left( { - 4 - x} \right)}\\{2 - y =  - \frac{1}{2}\left( {7 - y} \right)}\\{ - 1 - z =  - \frac{1}{2}\left( {5 - z} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x =  - \frac{2}{3}}\\{y = \frac{{11}}{3}}\\{z = 1}\end{array} \Rightarrow D\left( { - \frac{2}{3}\,;\,\,\frac{{11}}{3}\,;\,\,1} \right) \Rightarrow a + b + 2c = 5} \right.} \right..\)

Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 12,892

Câu 2:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 9,711

Câu 3:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 8,091

Câu 4:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 7,016

Câu 5:

Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là

Xem đáp án » 25/06/2024 6,434

Câu 6:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 5,248

Câu 7:

Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(P\left( { - 3\,;\,\, - 2} \right)\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 36.\) Từ điểm \(P\) kẻ các tiếp tuyến \[PM\] và \[PN\] tới đường tròn \(\left( C \right),\) với \[M,\,\,N\] là các tiếp điểm. Phương trình đường thẳng \[MN\] là

Xem đáp án » 25/06/2024 3,116
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua