Câu hỏi:
25/06/2024 412Trong không gian với hệ tọa độ \[Oxyz,\] cho tam giác \[ABC\] có \(A\left( {1\,;\,\,2\,;\,\, - 1} \right),\,\,B\left( {2\,;\,\, - 1\,;\,\,3} \right),\)\(C\left( { - 4\,;\,\,7\,;\,\,5} \right).\) Gọi \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) là chân đường phân giác trong góc \[B\] của tam giác \[ABC.\] Giá trị của \(a + b + 2c\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(AB = \sqrt {26} \,,\,\,BC = \sqrt {104} = 2\sqrt {26} .\)
Gọi \[D\left( {x\,;\,\,y\,;\,\,z} \right)\], theo tính chất phân giác ta có \(\frac{{DA}}{{DC}} = \frac{{BA}}{{BC}} = \frac{1}{2}.\)
Suy ra \(\overrightarrow {DA} = - \frac{1}{2}\overrightarrow {DC} & (*).\)
Ta có \(\overrightarrow {DA} = \left( {1 - x\,;\,\,2 - y\,;\,\, - 1 - z} \right)\) và \(\overrightarrow {DC} = \left( { - 4 - x\,;\,\,7 - y\,;\,\,5 - z} \right).\)
Do đó \((*) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{1 - x = - \frac{1}{2}\left( { - 4 - x} \right)}\\{2 - y = - \frac{1}{2}\left( {7 - y} \right)}\\{ - 1 - z = - \frac{1}{2}\left( {5 - z} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - \frac{2}{3}}\\{y = \frac{{11}}{3}}\\{z = 1}\end{array} \Rightarrow D\left( { - \frac{2}{3}\,;\,\,\frac{{11}}{3}\,;\,\,1} \right) \Rightarrow a + b + 2c = 5} \right.} \right..\)
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!