Một ô tô bắt đầu chuyển động dần đều với vận tốc \(v(t) = 7t\,\,(\;{\rm{m}}/{\rm{s}})\), đi được 5 giây thì người lái xe phát hiện chướng ngại vật và phanh gấp. Ô tô tiếp tục chuyển động chậm dần đều với gia tốc \(a = - 70\,\,{\rm{m}}/{{\rm{s}}^2}.\) Quãng đường đi được của ô tô từ lúc bắt đầu chuyển bán cho đến khi dừng hẳn là
Quảng cáo
Trả lời:

Vận tốc ô tô tại thời điểm bắt đầu phanh là \({v_1}\left( 5 \right) = 35\,\,(\;{\rm{m}}/{\rm{s}}).\)
Vận tốc của chuyển động khi phanh là \({v_2}(t) = - 70t + c.\)
Do \({v_2}\left( 0 \right) = 35\,\,(\;{\rm{m}}/{\rm{s}}) \Rightarrow c = 35 \Rightarrow {v_2}\left( t \right) = - 70t + 35.\)
Khi xe dừng hẳn tức là: \({v_2}\left( t \right) = 0 \Rightarrow - 70t + 35 = 0 \Leftrightarrow t = \frac{1}{2}{\rm{. }}\)
Quãng đường \(S\,\,\left( m \right)\) đi được ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn là
\[S\,\,\left( m \right) = \int\limits_0^5 {7t} \,dt + \int\limits_0^{\frac{1}{2}} {\left( { - 70t + 35} \right)} \,dt = 96,25\,\,(\;{\rm{m}})\]. Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.