Câu hỏi:
25/06/2024 159Một ô tô bắt đầu chuyển động dần đều với vận tốc \(v(t) = 7t\,\,(\;{\rm{m}}/{\rm{s}})\), đi được 5 giây thì người lái xe phát hiện chướng ngại vật và phanh gấp. Ô tô tiếp tục chuyển động chậm dần đều với gia tốc \(a = - 70\,\,{\rm{m}}/{{\rm{s}}^2}.\) Quãng đường đi được của ô tô từ lúc bắt đầu chuyển bán cho đến khi dừng hẳn là
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Vận tốc ô tô tại thời điểm bắt đầu phanh là \({v_1}\left( 5 \right) = 35\,\,(\;{\rm{m}}/{\rm{s}}).\)
Vận tốc của chuyển động khi phanh là \({v_2}(t) = - 70t + c.\)
Do \({v_2}\left( 0 \right) = 35\,\,(\;{\rm{m}}/{\rm{s}}) \Rightarrow c = 35 \Rightarrow {v_2}\left( t \right) = - 70t + 35.\)
Khi xe dừng hẳn tức là: \({v_2}\left( t \right) = 0 \Rightarrow - 70t + 35 = 0 \Leftrightarrow t = \frac{1}{2}{\rm{. }}\)
Quãng đường \(S\,\,\left( m \right)\) đi được ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn là
\[S\,\,\left( m \right) = \int\limits_0^5 {7t} \,dt + \int\limits_0^{\frac{1}{2}} {\left( { - 70t + 35} \right)} \,dt = 96,25\,\,(\;{\rm{m}})\]. Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 2:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 3:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 4:
Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là
Câu 5:
Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là
Câu 6:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 7:
Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(P\left( { - 3\,;\,\, - 2} \right)\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 36.\) Từ điểm \(P\) kẻ các tiếp tuyến \[PM\] và \[PN\] tới đường tròn \(\left( C \right),\) với \[M,\,\,N\] là các tiếp điểm. Phương trình đường thẳng \[MN\] là
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận