Câu hỏi:

25/06/2024 2,199

Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có \(y' = \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} < 0,\,\,\forall x \in D\) và đường thẳng \(d:y = x - m\) có hệ số \(a = 1 > 0\) nên \(d\) luôn cắt \((C)\) tại hai điểm phân biệt \[A\left( {{x_A};{y_A}} \right)\] và \(B\left( {{x_B};{y_B}} \right)\) với mọi giá trị của tham số \[m.\]

Phương trình hoành độ giao điểm của \(d\) và \((C)\) là:

\(\frac{{x + 3}}{{x + 1}} = x - m \Leftrightarrow {x^2} - mx - m - 3 = 0\,\,\left( {x \ne  - 1} \right).\)

Suy ra \({x_A},{x_B}\) là 2 nghiệm của phương trình \({x^2} - mx - m - 3 = 0.\)

Theo định lí Viète, ta có \({x_A} + {x_B} = m.\)

Mặt khác, \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác OAB nên \({x_A} + {x_B} + {x_O} = 3{x_G}\)

\( \Leftrightarrow {x_A} + {x_B} = 6 \Leftrightarrow m = 6.{\rm{ }}\)Vậy \(m = 6\) thoả mãn yêu cầu đề bài. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 8,867

Câu 2:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 7,739

Câu 3:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 5,977

Câu 4:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 4,779

Câu 5:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 2,510

Câu 6:

Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x}  + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}}  + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là

Xem đáp án » 25/06/2024 2,164

Bình luận


Bình luận