Câu hỏi:
25/06/2024 42Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = a,\,\,AD = SA = 2a,\) \(SA \bot \left( {ABCD} \right)\). Khi đó \(\tan \left( {\widehat {\left( {SBD} \right),\,\,\left( {ABCD} \right)}} \right)\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\); Kẻ \(AH \bot BD\) tại \[H.\]
Ta có \(\left. {\begin{array}{*{20}{c}}{AH \bot BD}\\{BD \bot SA}\end{array}} \right\} \Rightarrow BD \bot (SAH) \Rightarrow BD \bot SH.\)
\( \Rightarrow \left( {\widehat {\left( {SBD} \right),\,\,\left( {ABCD} \right)}} \right) = \left( {\widehat {HA,\,HS}} \right).\)
• Xét \(\Delta SAH\) vuông tại \(A\), ta có \(\widehat {SHA} < 90^\circ \Rightarrow \left( {\widehat {HA,\,HS}} \right) = \widehat {SHA}\)
• Xét \(\Delta ABD\) vuông tại \(A\) có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AH = \frac{{2\sqrt 5 }}{5}.\)
Suy ra \(\tan \widehat {SHA} = \frac{{SA}}{{AH}} = \frac{{2a}}{{\frac{{2a\sqrt 5 }}{5}}} = \sqrt 5 .\) Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!