Câu hỏi:

25/06/2024 149 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = a,\,\,AD = SA = 2a,\) \(SA \bot \left( {ABCD} \right)\). Khi đó \(\tan \left( {\widehat {\left( {SBD} \right),\,\,\left( {ABCD} \right)}} \right)\) bằng

A. \(\frac{{\sqrt 5 }}{2}.\)   
B. \(\sqrt 5 .\)     
C. \(\frac{1}{{\sqrt 5 }}.\)     
D. \(\frac{2}{{\sqrt 5 }}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Ta có \(\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\); Kẻ \(AH \bot BD\) tại \[H.\]

Ta có \(\left. {\begin{array}{*{20}{c}}{AH \bot BD}\\{BD \bot SA}\end{array}} \right\} \Rightarrow BD \bot (SAH) \Rightarrow BD \bot SH.\)

\( \Rightarrow \left( {\widehat {\left( {SBD} \right),\,\,\left( {ABCD} \right)}} \right) = \left( {\widehat {HA,\,HS}} \right).\)

• Xét \(\Delta SAH\) vuông tại \(A\), ta có \(\widehat {SHA} < 90^\circ  \Rightarrow \left( {\widehat {HA,\,HS}} \right) = \widehat {SHA}\)

• Xét \(\Delta ABD\) vuông tại \(A\) có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AH = \frac{{2\sqrt 5 }}{5}.\)

Suy ra \(\tan \widehat {SHA} = \frac{{SA}}{{AH}} = \frac{{2a}}{{\frac{{2a\sqrt 5 }}{5}}} = \sqrt 5 .\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty \,;\,\,5} \right).\)                  
B. \(\left( { - \infty \,;\,\,2} \right].\)                
C. \(\left( { - \infty \,;\,\,2} \right).\)     
D. \(\left( { - \infty \,;\,\,5} \right].\)

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Câu 2

A. 3.                              
B. 15.                            
C. \[ - 21.\]     
D. \[ - 3.\]

Lời giải

Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên

\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 =  - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b =  - 10}\\{3a + b =  - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b =  - 11}\end{array}} \right.} \right.} \right..\)

\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 20.                            
B. 25.                            
C. \(\frac{{45}}{2}.\)             
D. \(\frac{{25}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP