Câu hỏi:

25/06/2024 273 Lưu

Tính tổng các nghiệm nguyên thuộc \(\left[ { - 5\,;\,\,10} \right]\) của bất phương trình \[{2^{{x^2} + x}}\left( {3{x^2} - 6x + 6} \right) \ge 7{x^2} - 29x + 34.\]

A. 54.                           
B. 40.                            
C. 55.    
D. 41.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[{2^{{x^2} + x}}\left( {3{x^2} - 6x + 6} \right) \ge 7{x^2} - 29x + 34\]

\[ \Leftrightarrow {2^{{x^2} + x - 2}}\left( {12{x^2} - 24x + 24} \right) \ge 7{x^2} - 29x + 34\]

Đặt \[a = 12{x^2} - 24x + 24\,,\,\,b = 7{x^2} - 29x + 34\,\,\left( {a\,,\,\,b > 0} \right)\]\( \Rightarrow {x^2} + x - 2 = \frac{{a - b}}{5}.\)

Khi đó ta có \({2^{\frac{{a - b}}{5}}} \cdot a \ge b \Leftrightarrow a \cdot {2^{\frac{a}{5}}} \ge b \cdot {2^{\frac{b}{5}}}\).

Xét hàm số \(f\left( t \right) = t \cdot {2^{\frac{t}{5}}}\) với \(t > 0\). Ta có \(f'\left( t \right) = {2^{\frac{t}{5}}} + \frac{1}{5}t \cdot {2^{\frac{t}{5}}}\ln 2 > 0\,\,\forall t > 0.\)

Khi đó hàm số đồng biến trên \(\left( {0\,;\,\, + \infty } \right)\)

\[ \Rightarrow f\left( a \right) \ge f\left( b \right) \Leftrightarrow a \ge b\]\[ \Rightarrow 12{x^2} - 24x + 24 \ge 7{x^2} - 29x + 34\]

\[ \Leftrightarrow 5{x^2} + 5x - 10 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 1\\x \le  - 2\end{array} \right.\].

Kết hợp điều kiện ta suy ra \(x \in \left\{ { - 5\,;\,\, - 4\,;\,\, \ldots ;\,\,10} \right\}.\)

Do đó tổng các nghiệm nguyên thuộc \(\left[ { - 5\,;\,\,10} \right]\) của bất phương trình là:

\( - 5 - 4 - 3 - 2 - 1 + 0 + 1 + 2 +  \ldots  + 10 = 41.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty \,;\,\,5} \right).\)                  
B. \(\left( { - \infty \,;\,\,2} \right].\)                
C. \(\left( { - \infty \,;\,\,2} \right).\)     
D. \(\left( { - \infty \,;\,\,5} \right].\)

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Câu 2

A. 3.                              
B. 15.                            
C. \[ - 21.\]     
D. \[ - 3.\]

Lời giải

Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên

\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 =  - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b =  - 10}\\{3a + b =  - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b =  - 11}\end{array}} \right.} \right.} \right..\)

\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 20.                            
B. 25.                            
C. \(\frac{{45}}{2}.\)             
D. \(\frac{{25}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP