Trong không gian với hệ tọa độ \[Oxyz,\] cho hai điểm \(A\left( {0\,;\,\,2\,;\,\, - 2} \right),\,\,B\left( {2\,;\,\,2\,;\,\, - 4} \right).\) Giả sử \[I\left( {a\,;\,\,b\,;\,\,c} \right)\] là tâm đường tròn ngoại tiếp tam giác \[OAB.\] Tính \(T = {a^2} + {b^2} + {c^2}\).
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {OA} = \left( {0\,;\,\,2\,;\,\, - 2} \right),\,\,\overrightarrow {OB} = \left( {2\,;\,\,2\,;\,\, - 4} \right) \Rightarrow \left( {OAB} \right)\) có phương trình: \(x + y + z = 0\)
\(I \in \left( {OAB} \right) \Rightarrow a + b + c = 0.\)
\(\overrightarrow {AI} = \left( {a\,;\,\,b - 2\,;\,\,c + 2} \right),\,\,\overrightarrow {BI} = \left( {a - 2\,;\,\,b - 2\,;\,\,c + 4} \right),\,\,\overrightarrow {OI} = \left( {a\,;\,\,b\,;\,\,c} \right).\)
Ta có hệ \(\left\{ {\begin{array}{*{20}{l}}{AI = BI}\\{AI = OI}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} + {{\left( {c + 2} \right)}^2} = {{\left( {a - 2} \right)}^2} + {{\left( {c + 4} \right)}^2}}\\{{{\left( {b - 2} \right)}^2} + {{\left( {c + 2} \right)}^2} = {b^2} + {c^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a - c = 4}\\{ - b + c = - 2}\end{array}} \right.} \right.} \right.\)
Ta có hệ \(\left\{ {\begin{array}{*{20}{l}}{a - c = 4}\\{ - b + c = - 2}\\{a + b + c = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a - c = 4}\\{ - b + c = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 0}\\{c = - 2}\end{array}} \right.} \right.} \right..\)
Do đó \(I\left( {2\,;\,\,0\,;\,\, - 2} \right) \Rightarrow T = {a^2} + {b^2} + {c^2} = 8.\) Chọn A.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.