Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{a^2}b + a{b^2} = 48}\\{a + b = 6}\end{array}} \right..\) Biết hệ phương trình có nghiệm là \(\left( {a\,;\,\,b} \right) = \left( {u\,;\,\,v} \right).\) Tính \[A = \left| {u - v} \right|.\]
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{a^2}b + a{b^2} = 48}\\{a + b = 6}\end{array}} \right..\) Biết hệ phương trình có nghiệm là \(\left( {a\,;\,\,b} \right) = \left( {u\,;\,\,v} \right).\) Tính \[A = \left| {u - v} \right|.\]
A. 5
B. 4
C. 3
D. 2
Quảng cáo
Trả lời:

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{a^2}b + a{b^2} = 48}\\{a + b = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ab\left( {a + b} \right) = 48}\\{a + b = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{6ab = 48}\\{a + b = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ab = 8}\\{a + b = 6}\end{array}.} \right.} \right.} \right.} \right.\)
Đặt \(S = a + b\,;\,\,P = ab\) ta được: \(\left\{ {\begin{array}{*{20}{l}}{S = 6}\\{P = 8}\end{array}} \right..\)
Khi đó \[a\,,\,\,b\] là nghiệm của phương trình: \({X^2} - 6X + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{X = 2}\\{X = 4}\end{array}} \right..\)
Suy ra \(\left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 4}\end{array}} \right.\) hoặc \(\left\{ {\begin{array}{*{20}{l}}{a = 4}\\{b = 2}\end{array}} \right..\)
Suy ra \(A = \left| {u - v} \right| = \left| {2 - 4} \right| = 2\) hoặc \(A = \left| {u - v} \right| = \left| {4 - 2} \right| = 2.\)
Vậy \(A = \left| {u - v} \right| = 2.\) Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.