Câu hỏi:

25/06/2024 119

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông tại \[A.\] Hình chiếu của \[S\] lên mặt phẳng \(\left( {ABC} \right)\) là trung điểm \(H\) của \(BC,\,\,AB = a,\,\,AC = a\sqrt 3 ,\,\,SB = a\sqrt 2 .\) Thể tích của khối chóp \[S.ABC\]bằng

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét tam giác \[ABC\] vuông tại \(A\) có:

 \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{a^2} + {{\left( {a\sqrt 3 } \right)}^2}}  = 2a.\)

Vì \(H\) là trung điểm của \[BC\] nên \(BH = a.\)

Xét tam giác \[SBH\] vuông tại \(H\) có:

 \(SH = \sqrt {S{B^2} - H{B^2}}  = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} - {a^2}}  = a.\)

Diện tích đáy \[ABC\] là: \({S_{ABC}} = \frac{1}{2}AB \cdot AC = \frac{1}{2}{a^2} \cdot \sqrt 3 .\)

Thể tích của khối chóp \[S.ABC\] là: \(V = \frac{1}{3}SH \cdot {S_{ABC}} = \frac{1}{3} \cdot a \cdot \frac{1}{2}{a^2}\sqrt 3  = \frac{{{a^3}\sqrt 3 }}{6}.\) Chọn C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 13,076

Câu 2:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 9,837

Câu 3:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 8,206

Câu 4:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 7,434

Câu 5:

Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là

Xem đáp án » 25/06/2024 6,573

Câu 6:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 5,327

Câu 7:

Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(P\left( { - 3\,;\,\, - 2} \right)\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 36.\) Từ điểm \(P\) kẻ các tiếp tuyến \[PM\] và \[PN\] tới đường tròn \(\left( C \right),\) với \[M,\,\,N\] là các tiếp điểm. Phương trình đường thẳng \[MN\] là

Xem đáp án » 25/06/2024 3,949
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua