Trong không gian với hệ trục tọa độ \[Oxyz,\] gọi \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm mặt cầu đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,4} \right)\) và tiếp xúc với tất cả các mặt phẳng tọa độ. Tính \(P = a - b + c.\)
Quảng cáo
Trả lời:

Vì mặt cầu tâm \(I\) tiếp xúc với các mặt phẳng toạ độ nên ta có
\(d\left( {I,\,\,\left( {{\rm{Oyz}}} \right)} \right) = d\left( {I,\,\,\left( {{\rm{Ozx}}} \right)} \right) = d\left( {I,\,\,\left( {{\rm{Oxy}}} \right)} \right) \Leftrightarrow \left| a \right| = \left| b \right| = \left| c \right| \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = b = c}\\{a = b = - c}\\{a = - b = c}\\{a = - b = - c}\end{array}} \right..\)
Nhận thấy chỉ có trường hợp \(a = - b = c\) thì phương trình \(AI = d\left( {I,\,\,\left( {{\rm{Oxy}}} \right)} \right)\) có nghiệm, các trường hợp còn lại vô nghiệm.
Thật vậy: với \(a = - b = c\) thì \[I\left( {a\,;\,\, - a\,;\,\,a} \right)\].
Ta có \(AI = d\left( {I,\,\,\left( {{\rm{Oxy}}} \right)} \right) \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {a - 1} \right)^2} + {\left( {a - 4} \right)^2} = {a^2} \Leftrightarrow {a^2} - 6a + 9 = 0 \Leftrightarrow a = 3.\)
Khi đó \(P = a - b + c = 9.\) Do đó \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1\). Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.