Số nghiệm nguyên của bất phương trình \(\left( {{3^x} + {3^{6 - x}} - 246} \right)\sqrt {5 - \ln \left( {x + 3} \right)} \ge 0\) là
Quảng cáo
Trả lời:

Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{x + 3 > 0}\\{5 - \ln \left( {x + 3} \right) \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > - 3}\\{\ln \left( {x + 3} \right) \le 5}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > - 3}\\{x + 3 \le {e^5}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > - 3}\\{x \le {e^5} - 3}\end{array} \Leftrightarrow - 3 < x \le {e^5} - 3.} \right.} \right.\)
Ta có: \(\left( {{3^x} + {3^{6 - x}} - 246} \right)\sqrt {5 - \ln \left( {x + 3} \right)} \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{5 - \ln \left( {x + 3} \right) = 0{\rm{ (1) }}}\\{{3^x} + {3^{6 - x}} - 246 \ge 0}\end{array}} \right.\)
(1) \( \Leftrightarrow \ln \left( {x + 3} \right) = 5 \Leftrightarrow x + 3 = {e^5} \Leftrightarrow x = {e^5} - 3\) (nhận).
\((2) \Leftrightarrow {3^x} + \frac{{729}}{{{3^x}}} - 246 \ge 0 \Leftrightarrow {3^{2x}} - 246 \cdot {3^x} + 729 \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{3^x} \le 3}\\{{3^x} \ge {3^5}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x \le 1}\\{x \ge 5}\end{array}} \right.} \right..\)
So với điều kiện, ta có các giá trị nguyên thỏa mãn là \(x \in \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1} \right\} \cup \left\{ {5\,;\,\,6\,;\,\, \ldots ;\,\,145} \right\}.\)
Vậy bất phương trình đã cho có 145 nghiệm nguyên. Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.