Câu hỏi:
25/06/2024 1,825Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
ТХĐ: \(D = \left[ { - 2\,;\,\,2} \right].\)
Đặt \[t = \sqrt {2 + x} + \sqrt {2 - x} \,;\,\,t \in \left[ {2\,;\,\,2\sqrt 2 } \right].\]
\( \Leftrightarrow {t^2} = 4 + 2\sqrt {4 - {x^2}} \Leftrightarrow 2\sqrt {4 - {x^2}} = {t^2} - 4.\)
\( \Rightarrow y = g\left( t \right) = {m^2}t + 2\left( {{t^2} - 4} \right) + m + 1 = 2{t^2} + {m^2}t + m - 7\) với \(t \in \left[ {2\,;\,\,2\sqrt 2 } \right].\)
Ta có: \(g'\left( t \right) = 4t + {m^2}\,;\)\(g'\left( t \right) = 0 \Leftrightarrow t = \frac{{ - {m^2}}}{4} < 0\,;\,\,\forall m \in \mathbb{R}\)
\( \Rightarrow g\left( t \right)\) đồng biến trên \[\left[ {2\,;\,\,2\sqrt 2 } \right]\]\( \Rightarrow {\min _{\left[ {2\,;\,\,2\sqrt 2 } \right]}}g\left( t \right) = g\left( 2 \right) = 4\).
Mà \[g\left( 2 \right) = 2{m^2} + m + 1 \Leftrightarrow 2{m^2} + m + 1 = 4 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 1}\\{m = - \frac{3}{2}}\end{array}} \right..\]
Tổng các giá trị của \(m\) thoả mãn yêu cầu bài toán là \(S = 1 + \left( { - \frac{3}{2}} \right) = - \frac{1}{2}.\) Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 6:
về câu hỏi!