Câu hỏi:
25/06/2024 119Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Gắn hệ trục toạ độ \[Oxy\] sao cho \[AB\] trùng \[Ox,{\rm{ }}A\] trùng \[O\] khi đó parabol có đỉnh \(G\left( {2\,;\,\,4} \right)\) và đi qua gốc toạ độ.
Giả sử phương trình của parabol có dạng
\(y = a{x^2} + bx + c\,\,\left( {a \ne 0} \right).\)
Vì parabol có đỉnh là \(G\left( {2\,;\,\,4} \right)\) và đi qua điểm \(O\left( {0\,;\,\,0} \right)\) nên ta có \(\left\{ {\begin{array}{*{20}{l}}{c = 0}\\{ - \frac{b}{{2a}} = 2}\\{a{{.2}^2} + b.2 + c = 4}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 4}\\{c = 0}\end{array}} \right.} \right..\)
Suy ra phương trình parabol là \(y = f(x) = - {x^2} + 4x.\)
Diện tích của cả cổng là \(S = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)} \,{\rm{d}}x = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_0^4 = \frac{{32}}{3}\,\,\left( {{m^2}} \right).\)
Mặt khác chiều cao \(CF = DE = f\left( {0,9} \right) = 2,79\,\,(m);\,\,CD = 4 - 2 \cdot 0,9 = 2,2\,\,(m).\)
Diện tích hai cánh cổng là: \({S_{CDEF}} = CD \cdot EF = 6,138\,\,\left( {\;{{\rm{m}}^2}} \right).\)
Diện tích phần xiên hoa là: \[{S_{xh}} = S - {S_{CDEF}} = \frac{{32}}{3} - 6 \cdot 14 = \frac{{6\,\,793}}{{1\,\,500}}\,\,\left( {\;{{\rm{m}}^2}} \right).\]
Tổng số tiền để làm cổng là: \(6,138 \cdot 1\,\,200\,\,000 + \frac{{6\,\,793}}{{1\,\,500}} \cdot 900\,\,000 = 11\,\,441\,\,400\) (đồng).
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
Trong hệ tọa độ \[Oxy,\] cho hai điểm \(A\left( {2\,;\,\,1} \right),B\left( { - 1\,;\,\,7} \right).\) Tọa độ điểm \(M\) thỏa mãn hệ thức \(3\overrightarrow {AM} + \overrightarrow {AB} = \vec 0\) là
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!