Câu hỏi:
25/06/2024 47Cho hàm số \(y = \frac{{x + b}}{{ax - 2}}\,\,\left( {ab \ne - 2} \right).\) Biết rằng \[a,\,\,b\] là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1\,;\,\, - 2} \right)\) song song với đường thẳng \(d:3x + y - 4 = 0.\) Khi đó giá trị của \(a - 3b\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Có \(y' = \frac{{ - ab - 2}}{{{{\left( {ax - 2} \right)}^2}}}.\) Do \(A\left( {1\,;\,\, - 2} \right)\) thuộc đồ thị hàm số nên \(\frac{{1 + b}}{{a - 2}} = - 2 \Leftrightarrow b = 3 - 2a.\)
Do tiếp tuyến tại \(A\left( {1\,;\,\, - 2} \right)\) song song với đường thẳng \(d:3x + y - 4 = 0\) nên \(y'\left( 1 \right) = - 3 \Leftrightarrow \frac{{ - ab - 2}}{{{{\left( {ax - 2} \right)}^2}}} = - 3.\)
Thay \(b = 3 - 2a\) ta được phương trình
\[ - a\left( {3 - 2a} \right) - 2 = - 3{\left( {a - 2} \right)^2} \Leftrightarrow 5{a^2} - 15a + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 1}\\{a = 2}\end{array}} \right..\]
• Với \(a = 2 \Rightarrow b = - 1\) (loại, do \(ab \ne - 2\))
• Với \(a = 1 \Rightarrow b = 1.\)
Phương trình tiếp tuyến tại \(A\left( {1\,;\,\, - 2} \right)\) là \[y = - 3\left( {x + 1} \right) + 2\] song song với \[d.\]
Do đó \(a = 1\,,\,\,b = 1.\) Suy ra \(a - 3b = - 2.\) Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!