Cho hàm số \(y = \frac{{x + b}}{{ax - 2}}\,\,\left( {ab \ne - 2} \right).\) Biết rằng \[a,\,\,b\] là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm \(A\left( {1\,;\,\, - 2} \right)\) song song với đường thẳng \(d:3x + y - 4 = 0.\) Khi đó giá trị của \(a - 3b\) bằng
Quảng cáo
Trả lời:

Có \(y' = \frac{{ - ab - 2}}{{{{\left( {ax - 2} \right)}^2}}}.\) Do \(A\left( {1\,;\,\, - 2} \right)\) thuộc đồ thị hàm số nên \(\frac{{1 + b}}{{a - 2}} = - 2 \Leftrightarrow b = 3 - 2a.\)
Do tiếp tuyến tại \(A\left( {1\,;\,\, - 2} \right)\) song song với đường thẳng \(d:3x + y - 4 = 0\) nên \(y'\left( 1 \right) = - 3 \Leftrightarrow \frac{{ - ab - 2}}{{{{\left( {ax - 2} \right)}^2}}} = - 3.\)
Thay \(b = 3 - 2a\) ta được phương trình
\[ - a\left( {3 - 2a} \right) - 2 = - 3{\left( {a - 2} \right)^2} \Leftrightarrow 5{a^2} - 15a + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 1}\\{a = 2}\end{array}} \right..\]
• Với \(a = 2 \Rightarrow b = - 1\) (loại, do \(ab \ne - 2\))
• Với \(a = 1 \Rightarrow b = 1.\)
Phương trình tiếp tuyến tại \(A\left( {1\,;\,\, - 2} \right)\) là \[y = - 3\left( {x + 1} \right) + 2\] song song với \[d.\]
Do đó \(a = 1\,,\,\,b = 1.\) Suy ra \(a - 3b = - 2.\) Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.