Câu hỏi:

25/06/2024 699 Lưu

Cho tứ diện \[ABCD\] có \(AB = 1\,;\,\,AC = 2\,;\,\,AD = 3\) và \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = 60^\circ .\) Thể tích \(V\) của khối tứ diện \[ABCD\] là

A. \(V = \frac{{\sqrt 2 }}{2}.\)    
B. \(V = \frac{{\sqrt 2 }}{6}.\)                            
C. \(V = \frac{{\sqrt 3 }}{4}.\)     
D. \(V = \frac{{\sqrt 2 }}{{12}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Do \(AB < AC < AD\) nên chọn \(E \in AC\,,\,\,AE = 1\,,\,\,F \in AD\,,\,\,AF = 1\).

Ta có \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = 60^\circ \) (giả thiết)

Suy ra tứ diện \[ABEF\] là tứ diện đều cạnh bằng 1.

Ta có \({V_{ABEF}} = \frac{{\sqrt 2 }}{{12}}.\)

Mặt khác ta có \(\frac{{{V_{ABCD}}}}{{{V_{ABEF}}}} = \frac{{AB \cdot AC \cdot AD}}{{AB \cdot AE \cdot AF}} = \frac{{1 \cdot 2 \cdot 3}}{{1 \cdot 1 \cdot 1}} = 6.\)

Suy ra \({V_{ABCD}} = \frac{{\sqrt 2 }}{2}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty \,;\,\,5} \right).\)                  
B. \(\left( { - \infty \,;\,\,2} \right].\)                
C. \(\left( { - \infty \,;\,\,2} \right).\)     
D. \(\left( { - \infty \,;\,\,5} \right].\)

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Câu 2

A. 3.                              
B. 15.                            
C. \[ - 21.\]     
D. \[ - 3.\]

Lời giải

Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên

\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 =  - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b =  - 10}\\{3a + b =  - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b =  - 11}\end{array}} \right.} \right.} \right..\)

\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 20.                            
B. 25.                            
C. \(\frac{{45}}{2}.\)             
D. \(\frac{{25}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP