Câu hỏi:
25/06/2024 51Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bán kính đáy của hình nón là: \(r = \frac{{10}}{2} = 5\,\,(cm).\)
Gọi đường sinh của hình nón là \[\ell {\rm{ }}\left( {cm} \right)\], đường cao của hình trụ là \[h{\rm{ }}\left( {cm} \right).\]
Ta có \[\frac{h}{2} = \ell \sin 60^\circ \Leftrightarrow h = \ell \sqrt 3 .\]
Mà \[\ell = \frac{r}{{\cos 60^\circ }} = \frac{5}{{\frac{1}{2}}} = 10\,\,(cm)\] nên \[h = 10\sqrt 3 \,\,cm.\]
Thể tích hình trụ là: \({V_1} = \pi {r^2}h = \pi \cdot {5^2} \cdot 10\sqrt 3 = 250\pi \sqrt 3 \,\,\left( {c{m^3}} \right).\)
Thể tích hình nón là: \({V_2} = \frac{1}{3}\pi {r^2}\frac{h}{2} = \frac{1}{3}\pi \cdot {5^2} \cdot 5\sqrt 3 = \frac{{125\sqrt 3 }}{3}\pi \,\,\left( {c{m^3}} \right).\)
Thể tích phần không gian nằm trong khối trụ nhưng nằm ngoài hai khối nón là:
\(V = {V_1} - 2{V_2} = 250\pi \sqrt 3 - 2 \cdot \frac{{125\sqrt 3 }}{3}\pi \, \approx 906,9\,\,\left( {c{m^3}} \right).\) Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!