Câu hỏi:

25/06/2024 1,441

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = {u_n} + \frac{1}{{{2^n}}};\forall n \in {\mathbb{N}^*}}\end{array} \cdot } \right.\) Tính \(\lim \left( {{u_n} - 2} \right)\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \({u_n} = \left( {{u_n} - {n_{n - 1}}} \right) + \left( {{u_{n - 1}} - {u_{n - 2}}} \right) +  \ldots  + \left( {{u_2} - {u_1}} \right) + {u_1}\)

\( = {\left( {\frac{1}{2}} \right)^{n - 1}} + {\left( {\frac{1}{2}} \right)^{n - 2}} +  \ldots  + \frac{1}{2} + 1.\)

Dãy \({\left( {\frac{1}{2}} \right)^{n - 1}};\,\,{\left( {\frac{1}{2}} \right)^{n - 2}};\,\, \ldots ;\,\,\frac{1}{2};\,\,1\) là một cấp số nhân có \(n\) số hạng với số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{2}\) nên \({u_n} = \frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - {\left( {\frac{1}{2}} \right)^{n - 1}}.\)

Vậy \(\lim \left( {{u_n} - 2} \right) = \lim \left[ { - {{\left( {\frac{1}{2}} \right)}^{n - 1}}} \right] = 0.\)

Đáp án: 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 8,899

Câu 2:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 7,748

Câu 3:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 6,117

Câu 4:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 4,798

Câu 5:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 2,573

Câu 6:

Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng

Xem đáp án » 25/06/2024 2,216

Câu 7:

Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x}  + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}}  + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là

Xem đáp án » 25/06/2024 2,168

Bình luận


Bình luận