Câu hỏi:

19/08/2025 2,663 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = {u_n} + \frac{1}{{{2^n}}};\forall n \in {\mathbb{N}^*}}\end{array} \cdot } \right.\) Tính \(\lim \left( {{u_n} - 2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({u_n} = \left( {{u_n} - {n_{n - 1}}} \right) + \left( {{u_{n - 1}} - {u_{n - 2}}} \right) +  \ldots  + \left( {{u_2} - {u_1}} \right) + {u_1}\)

\( = {\left( {\frac{1}{2}} \right)^{n - 1}} + {\left( {\frac{1}{2}} \right)^{n - 2}} +  \ldots  + \frac{1}{2} + 1.\)

Dãy \({\left( {\frac{1}{2}} \right)^{n - 1}};\,\,{\left( {\frac{1}{2}} \right)^{n - 2}};\,\, \ldots ;\,\,\frac{1}{2};\,\,1\) là một cấp số nhân có \(n\) số hạng với số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{2}\) nên \({u_n} = \frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - {\left( {\frac{1}{2}} \right)^{n - 1}}.\)

Vậy \(\lim \left( {{u_n} - 2} \right) = \lim \left[ { - {{\left( {\frac{1}{2}} \right)}^{n - 1}}} \right] = 0.\)

Đáp án: 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty \,;\,\,5} \right).\)                  
B. \(\left( { - \infty \,;\,\,2} \right].\)                
C. \(\left( { - \infty \,;\,\,2} \right).\)     
D. \(\left( { - \infty \,;\,\,5} \right].\)

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Câu 2

A. 3.                              
B. 15.                            
C. \[ - 21.\]     
D. \[ - 3.\]

Lời giải

Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên

\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 =  - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b =  - 10}\\{3a + b =  - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b =  - 11}\end{array}} \right.} \right.} \right..\)

\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 20.                            
B. 25.                            
C. \(\frac{{45}}{2}.\)             
D. \(\frac{{25}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP