Câu hỏi:
25/06/2024 108Cho một đồng hồ cát như bên dưới (gồm hai hình nón chung đỉnh ghép lại), trong đó đường sinh bất kỳ của hình nón tạo với đáy một góc \(60^\circ .\) Biết rằng chiều cao của đồng hồ là \(30\;\,{\rm{cm}}\) và tổng thể tích của đồng hồ là \(1000\pi \,\,{\rm{c}}{{\rm{m}}^3}.\) Hỏi nếu cho đầy lượng cát vào phần bên trên thì khi chảy hết xuống dưới, tỉ số thể tích lượng cát chiếm chổ và thể tích phần phía dưới là bao nhiêu?
Quảng cáo
Trả lời:
Gọi \({r_1},\,\,{h_1},\,\,{r_2},\,\,{h_2}\) lần lượt là bán kính, đường cao của hình nón trên và hình nón dưới.
Do đường sinh bất kỳ của hình nón tạo với đáy một góc \(60^\circ .\)
Suy ra \(\widehat {OAI'} = \widehat {OBI} = 60^\circ \), khi đó ta có mối liên hệ: \({h_1} = \sqrt 3 {r_1},{h_2} = \sqrt 2 {r_2}.\)
Theo đề ta có: \(V = {V_1} + {V_2} = \frac{1}{3}\pi \left( {{h_1}{r_1}^2 + {h_2}{r_2}^2} \right) = \frac{1}{9}\pi \left( {{h_1}^3 + {h_2}^3} \right) = 1\,\,000\pi .\)
Mà \(\left( {{h_1}^3 + {h_2}^3} \right) = {\left( {{h_1} + {h_2}} \right)^3} - 3\left( {{h_1} + {h_2}} \right) \cdot {h_1}{h_2} \Rightarrow {h_1}{h_2} = 200.\)
Kết hợp giả thiết: \({h_1} + {h_2} = 30\) ta được \(\left\{ {\begin{array}{*{20}{l}}{{h_1} = 10}\\{{h_2} = 20}\end{array}} \right..\)
Từ đó tỉ lệ cần tìm là \(\frac{{{V_1}}}{{{V_2}}} = \frac{{{{\left( {10\sqrt 3 } \right)}^2} \cdot {h_1}}}{{{{\left( {20\sqrt 3 } \right)}^2} \cdot {h_2}}} = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}.\)
Đáp án: \(\frac{1}{8}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 2:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 3:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 4:
Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là
Câu 5:
Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là
Câu 6:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 7:
Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(P\left( { - 3\,;\,\, - 2} \right)\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 36.\) Từ điểm \(P\) kẻ các tiếp tuyến \[PM\] và \[PN\] tới đường tròn \(\left( C \right),\) với \[M,\,\,N\] là các tiếp điểm. Phương trình đường thẳng \[MN\] là
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận