Câu hỏi:

25/06/2024 89

Media VietJack

Cho một đồng hồ cát như bên dưới (gồm hai hình nón chung đỉnh ghép lại), trong đó đường sinh bất kỳ của hình nón tạo với đáy một góc \(60^\circ .\) Biết rằng chiều cao của đồng hồ là \(30\;\,{\rm{cm}}\) và tổng thể tích của đồng hồ là \(1000\pi \,\,{\rm{c}}{{\rm{m}}^3}.\) Hỏi nếu cho đầy lượng cát vào phần bên trên thì khi chảy hết xuống dưới, tỉ số thể tích lượng cát chiếm chổ và thể tích phần phía dưới là bao nhiêu?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \({r_1},\,\,{h_1},\,\,{r_2},\,\,{h_2}\) lần lượt là bán kính, đường cao của hình nón trên và hình nón dưới.

Do đường sinh bất kỳ của hình nón tạo với đáy một góc \(60^\circ .\)

Suy ra \(\widehat {OAI'} = \widehat {OBI} = 60^\circ \), khi đó ta có mối liên hệ: \({h_1} = \sqrt 3 {r_1},{h_2} = \sqrt 2 {r_2}.\)

Theo đề ta có: \(V = {V_1} + {V_2} = \frac{1}{3}\pi \left( {{h_1}{r_1}^2 + {h_2}{r_2}^2} \right) = \frac{1}{9}\pi \left( {{h_1}^3 + {h_2}^3} \right) = 1\,\,000\pi .\)

Mà \(\left( {{h_1}^3 + {h_2}^3} \right) = {\left( {{h_1} + {h_2}} \right)^3} - 3\left( {{h_1} + {h_2}} \right) \cdot {h_1}{h_2} \Rightarrow {h_1}{h_2} = 200.\)

Kết hợp giả thiết: \({h_1} + {h_2} = 30\) ta được \(\left\{ {\begin{array}{*{20}{l}}{{h_1} = 10}\\{{h_2} = 20}\end{array}} \right..\)

Từ đó tỉ lệ cần tìm là \(\frac{{{V_1}}}{{{V_2}}} = \frac{{{{\left( {10\sqrt 3 } \right)}^2} \cdot {h_1}}}{{{{\left( {20\sqrt 3 } \right)}^2} \cdot {h_2}}} = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}.\)

Đáp án: \(\frac{1}{8}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 12,303

Câu 2:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 9,540

Câu 3:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 8,037

Câu 4:

Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là

Xem đáp án » 25/06/2024 6,230

Câu 5:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 5,985

Câu 6:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 5,118

Câu 7:

Trong vật lí, sự phân rã của các chất phóng xạ được biểu diễn bởi công thức \(m\left( t \right) = {m_0} \cdot {\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\), trong đó \({m_0}\) là khối lượng ban đầu của chất phóng xạ (tại thời điểm \(t = 0),\) \(T\) là chu kì bán rã (tức là khoảng thời gian để một nửa khối lượng chất phóng xạ bị biến thành chất khác). Chu kì bán rã của Cacbon \(^{14}C\) là khoảng \[5\,\,730\] năm. Người ta tìm được trong một mẫu đồ cổ một lượng Cacbon và xác định được nó đã mất khoảng \[25\% \] lượng Cacbon ban đầu của nó. Hỏi mẫu đồ cổ đó có tuổi là bao nhiêu?

Xem đáp án » 25/06/2024 2,736