Câu hỏi:

19/08/2025 379 Lưu

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _3}\left( {{3^x} + 2m} \right) = {\log _5}\left( {{3^x} - {m^2}} \right)\) có nghiệm?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \(t = {\log _3}\left( {{3^x} + 2m} \right) = {\log _5}\left( {{3^x} - {m^2}} \right).\)

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{3^x} + 2m = {3^t}}\\{{3^x} - {m^2} = {5^t}}\end{array} \Rightarrow 2m + {m^2} = {3^t} - {5^t}} \right.\)\( \Rightarrow {\left( {m + 1} \right)^2} = {3^t} - {5^t} + 1\)

Xét hàm số \(f\left( t \right) = {3^t} - {5^t} + 1.\)

Ta có: \(f'\left( t \right) = {3^t}\ln 3 - {5^t}\ln 5 = 0 \Leftrightarrow t = {\log _{\frac{3}{5}}}\left( {{{\log }_3}5} \right) = {t_0}\).

\(\mathop {\lim }\limits_{t \to  - \infty } f\left( t \right) = 1\,,\,\,\mathop {\lim }\limits_{x \to  + \infty } f\left( t \right) = \mathop {\lim }\limits_{x \to  + \infty } {5^t}\left[ {{{\left( {\frac{3}{5}} \right)}^t} - 1 + \frac{1}{{{5^t}}}} \right] =  - \infty \).

Bảng biến thiên

Media VietJack

Từ BBT suy ra phương trình \((*)\) có nghiệm khi và chỉ khi

\({\left( {m + 1} \right)^2} \le f\left( {{t_0}} \right) \Leftrightarrow  - \sqrt {f\left( {{t_0}} \right)}  - 1 \le m \le \sqrt {f\left( {{t_0}} \right)}  + 1\)\( \Leftrightarrow  - 2,0675 \ldots  \le m \le 0,0675 \ldots \)

Mà \(m \in \mathbb{Z}\) nên \[m \in \left\{ { - 2\,;\,\, - 1\,;\,\,0} \right\}\].

Vậy có 3 giá trị nguyên của tham số \[m.\]

Đáp án: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty \,;\,\,5} \right).\)                  
B. \(\left( { - \infty \,;\,\,2} \right].\)                
C. \(\left( { - \infty \,;\,\,2} \right).\)     
D. \(\left( { - \infty \,;\,\,5} \right].\)

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Câu 2

A. 3.                              
B. 15.                            
C. \[ - 21.\]     
D. \[ - 3.\]

Lời giải

Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên

\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 =  - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b =  - 10}\\{3a + b =  - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b =  - 11}\end{array}} \right.} \right.} \right..\)

\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 20.                            
B. 25.                            
C. \(\frac{{45}}{2}.\)             
D. \(\frac{{25}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP