Câu hỏi:

25/06/2024 126

Cho các số phức \({z_1} =  - 2 + i\,,\,\,{z_2} = 2 + i\) và số phức \(z\) thay đổi thỏa mãn \({\left| {z - {z_1}} \right|^2} + {\left| {z - {z_2}} \right|^2} = 16.\) Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[\left| z \right|.\] Giá trị biểu thức \({M^2} - {m^2}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(z = x + yi\,\,\left( {x,y \in \mathbb{R}} \right) \Rightarrow \bar z = x - yi\)

Ta có \(\left( {z - 1} \right)\left( {\bar z + 2i} \right) = z \cdot \bar z + 2iz - \bar z - 2i\)

\( = {x^2} + {y^2} + 2i\left( {x + yi} \right) - x + yi - 2i\)

\( = {x^2} + {y^2} + 2xi - 2y - x + yi - 2i\)

\( = {x^2} + {y^2} - x - 2y + \left( {2x + y - 2} \right)i\) là số thực khi và chỉ khi: \(2x + y - 2 = 0\)

Gọi \(M(z)\) là tập hợp điểm \(M\) thuộc đường thẳng \((d):2x + y - 2 = 0.\)

Do đó \(\left| z \right| = OM\) nhỏ nhất \( \Leftrightarrow O{M_{\min }} = d\left( {O\,;\,\,\left( d \right)} \right) = \frac{2}{{\sqrt 5 }}\).

Vậy \({\left| {\sqrt 5 z} \right|_{\min }} = \sqrt 5 {\left| z \right|_{\min }} = \sqrt 5  \cdot \frac{2}{{\sqrt 5 }} = 2.\)

Đáp án: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:

• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)

• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z =  - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)

Vì \(\Delta  \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 8}\\{b =  - 2}\end{array}} \right.} \right..\)

Vậy \(a + 4b =  - 8 + 4 \cdot \left( { - 2} \right) =  - 16.\) Chọn A.

Câu 2

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP