Câu hỏi:
25/06/2024 2,589
Cho hai hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + 2x\) và \(g\left( x \right) = m{x^3} + n{x^2} - 2x\) với \(a\,,\,\,b\,,\,\,c\,,\,\,m\,,\,\,n \in \mathbb{R}.\) Biết hàm số \(y = f\left( x \right) - g\left( x \right)\) có ba điểm cực trị là \( - 1\,;\,\,2\) và 3. Tính diện tích hình phẳng giới hạn bởi hai đường \(y = 18f'\left( x \right)\) và \(y = 18g'\left( x \right).\)
Cho hai hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + 2x\) và \(g\left( x \right) = m{x^3} + n{x^2} - 2x\) với \(a\,,\,\,b\,,\,\,c\,,\,\,m\,,\,\,n \in \mathbb{R}.\) Biết hàm số \(y = f\left( x \right) - g\left( x \right)\) có ba điểm cực trị là \( - 1\,;\,\,2\) và 3. Tính diện tích hình phẳng giới hạn bởi hai đường \(y = 18f'\left( x \right)\) và \(y = 18g'\left( x \right).\)
Quảng cáo
Trả lời:
Ta có \(f\left( x \right) - g\left( x \right) = \left( {a{x^4} + b{x^3} + c{x^2} + 2x} \right) - \left( {m{x^3} + n{x^2} - 2x} \right)\)
\[ \Rightarrow f\left( x \right) - g\left( x \right) = a{x^4} + \left( {b - m} \right){x^3} + \left( {c - n} \right){x^2} + 4x\]
\( \Rightarrow f'\left( x \right) - g'\left( x \right) = 4a{x^3} + 3\left( {b - m} \right){x^2} + 2\left( {c - n} \right)x + 4\)
Lại có \(y = f\left( x \right) - g\left( x \right) \Rightarrow y' = f'\left( x \right) - g'\left( x \right) = 4a\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\)
Suy ra hệ số tự do là \(4a \cdot 1.\) Khi đó \(\left( { - 2} \right).\left( { - 3} \right) = 24a = 4 \Leftrightarrow a = \frac{1}{6}.\)
Hoành độ giao điểm của hai đường \(y = 18f'\left( x \right)\) và \(y = 18g'\left( x \right)\) là
\(18f'\left( x \right) = 18g'\left( x \right) \Leftrightarrow f'\left( x \right) - g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 2}\\{x = 3}\end{array}} \right.\).
Do đó, diện tích hình phẳng cần tính là:
\[S = \int\limits_{ - 1}^3 {\left| {18f'\left( x \right) - 18g'\left( x \right)} \right|} \,{\rm{d}}x = 18\int\limits_{ - 1}^3 {\left| {4 \cdot \frac{1}{6}\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)} \right|} \,{\rm{d}}x = 142.{\rm{ }}\]
Đáp án: 142.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:
• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)
• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z = - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)
Vì \(\Delta \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 8}\\{b = - 2}\end{array}} \right.} \right..\)
Vậy \(a + 4b = - 8 + 4 \cdot \left( { - 2} \right) = - 16.\) Chọn A.
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.