Câu hỏi:

25/06/2024 1,725

Các khí thải gây hiệu ứng nhà kính là nguyên nhân chủ yếu là Trái Đất nóng lên. Theo OECD (Tổ chức Hợp tác và Phát triển kinh tế thế giới), khi nhiệt độ trái đất tăng lên thì tổng giá trị kinh tế toàn cầu giảm. Người ta ước tính rằng, khi nhiệt độ trái đất tăng thêm \(2^\circ {\rm{C}}\) thì tổng giá trị kinh tế toàn cầu giảm 3 còn khi nhiệt độ trái đất tăng thêm \(5^\circ {\rm{C}}\) thì tổng giá trị kinh tế toàn cầu giảm 10. Biết rằng nhiệt độ trái đất tăng thêm \(t^\circ C\), tổng giá trị kinh tế toàn cầu giảm \[f\left( t \right)\] thì \(f\left( t \right) = k \cdot {a^t}\), trong đó \(k\) và \(a\) là các hằng số dương. Hỏi khi nhiệt độ Trái đất tăng thêm bao nhiêu \(^\circ {\rm{C}}\) (làm tròn đến phần nguyên) thì tổng giá trị kinh tế toàn cầu giảm đến 20?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{f\left( 2 \right) = 3}\\{f\left( 5 \right) = 10}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{k \cdot {a^2} = 3}\\{k \cdot {a^5} = 10}\end{array} \Rightarrow {a^3} = \frac{{10}}{3} \Leftrightarrow a = \sqrt[3]{{\frac{{10}}{3}}}} \right.} \right..\)

Ta cũng suy ra được: \(k = \frac{3}{{{a^2}}}.\) Do đó \[f\left( t \right) = k \cdot {a^t} = \frac{3}{{{a^2}}} \cdot {a^t}\] với \(a = \sqrt[3]{{\frac{{10}}{3}}}.\)

Ta cần tìm \(t\) để \(f\left( t \right) = 20\) hay \(k \cdot {a^t} = 20.\)

Suy ra \(t = {\log _a}\frac{{20}}{k} = {\log _a}\frac{{20{a^2}}}{3} \approx 7\,\,\left( {^\circ C} \right).\)

Đáp án: 7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:

• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)

• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z =  - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)

Vì \(\Delta  \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 8}\\{b =  - 2}\end{array}} \right.} \right..\)

Vậy \(a + 4b =  - 8 + 4 \cdot \left( { - 2} \right) =  - 16.\) Chọn A.

Câu 2

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP