Câu hỏi:

11/07/2024 1,877

Có bao nhiêu cặp số nguyên \(\left( {a\,;\,\,b} \right)\) thoả mãn \(a < 5\) và hàm số \(f\left( x \right) = a{x^4} + b{x^3} + {x^2} - 3\) có \({\min _\mathbb{R}}f\left( x \right) = f\left( 0 \right)?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Với \(a = b = 0\) thoả mãn.

• Với \(a = 0\,;\,\,b \ne 0\) hàm bậc 3 không tồn tại min, \(\max \) (không thoả mãn)

• Với \(a < 0 \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } f(x) =  - \infty \) nên không tồn tại min \(f(x)\) (loại) \( \Rightarrow a > 0\)

Ta có \(f(0) =  - 3 \Rightarrow \) Để hàm số thoả mãn yêu cầu thì \(f\left( x \right) \ge  - 3\,;\,\,\forall x \ne 0.\)

\( \Leftrightarrow a{x^4} + b{x^3} + {x^2} \ge 0 \Leftrightarrow {x^2}\left( {a{x^2} + bx + 1} \right) \ge 0\)\( \Leftrightarrow a{x^2} + bx + 1 \ge 0\)

\( \Leftrightarrow \Delta  = {b^2} - 4a \le 0 \Leftrightarrow {b^2} \le 4a\)

• Với \(a = 1 \Rightarrow  - 2 \le b \le 2\) có 5 cặp.         • Với \(a = 2 \Rightarrow  - 2 \le b \le 2\) có 5 cặp.

• Với \(a = 3 \Rightarrow  - 3 \le b \le 3\) có 7 cặp.         • Với \(a = 4 \Rightarrow  - 4 \le b \le 4\) có 9 cặp.

Vậy tổng cộng có 27 cặp \(\left( {a\,;\,\,b} \right)\) thoả mãn.

Đáp án: 27.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:

• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)

• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z =  - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)

Vì \(\Delta  \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 8}\\{b =  - 2}\end{array}} \right.} \right..\)

Vậy \(a + 4b =  - 8 + 4 \cdot \left( { - 2} \right) =  - 16.\) Chọn A.

Câu 2

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP