Câu hỏi:

11/07/2024 985

Có bao nhiêu cặp số nguyên \(\left( {a\,;\,\,b} \right)\) thoả mãn \(a < 5\) và hàm số \(f\left( x \right) = a{x^4} + b{x^3} + {x^2} - 3\) có \({\min _\mathbb{R}}f\left( x \right) = f\left( 0 \right)?\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Với \(a = b = 0\) thoả mãn.

• Với \(a = 0\,;\,\,b \ne 0\) hàm bậc 3 không tồn tại min, \(\max \) (không thoả mãn)

• Với \(a < 0 \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } f(x) =  - \infty \) nên không tồn tại min \(f(x)\) (loại) \( \Rightarrow a > 0\)

Ta có \(f(0) =  - 3 \Rightarrow \) Để hàm số thoả mãn yêu cầu thì \(f\left( x \right) \ge  - 3\,;\,\,\forall x \ne 0.\)

\( \Leftrightarrow a{x^4} + b{x^3} + {x^2} \ge 0 \Leftrightarrow {x^2}\left( {a{x^2} + bx + 1} \right) \ge 0\)\( \Leftrightarrow a{x^2} + bx + 1 \ge 0\)

\( \Leftrightarrow \Delta  = {b^2} - 4a \le 0 \Leftrightarrow {b^2} \le 4a\)

• Với \(a = 1 \Rightarrow  - 2 \le b \le 2\) có 5 cặp.         • Với \(a = 2 \Rightarrow  - 2 \le b \le 2\) có 5 cặp.

• Với \(a = 3 \Rightarrow  - 3 \le b \le 3\) có 7 cặp.         • Với \(a = 4 \Rightarrow  - 4 \le b \le 4\) có 9 cặp.

Vậy tổng cộng có 27 cặp \(\left( {a\,;\,\,b} \right)\) thoả mãn.

Đáp án: 27.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 8,261

Câu 2:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 6,613

Câu 3:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 4,263

Câu 4:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 2,782

Câu 5:

Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x}  + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}}  + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là

Xem đáp án » 25/06/2024 1,840

Câu 6:

Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng

Xem đáp án » 25/06/2024 1,740

Câu 7:

Ở các nước phát triển, lao động chủ yếu tập trung vào ngành nào sau đây? 

Xem đáp án » 24/07/2024 1,114

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store