Câu hỏi:

11/07/2024 98

Trong không gian Oxyz, cho mặt cầu \[(S):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và đường thẳng \(d:\frac{x}{3} = \frac{{y - 2}}{5} = \frac{{z + 3}}{{ - 4}}.\) Có bao nhiêu điểm \(M\) thuộc trục tung, với tung độ là số nguyên, mà từ \(M\) kẻ được đến \((S)\) hai tiếp tuyến cùng vuông góc với \(d\)?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt cầu \((S)\) có \[I\left( {1\,;\,\, - 2\,;\,\,3} \right)\], bán kính \(R = 5.\)

Vì \(M \in Oy\) nên \(M\left( {0\,;\,\,m\,;\,\,0} \right).\)

Gọi \((P)\) là mặt phẳng đi qua \(M\) và vuông góc với đường thẳng \(d\)

Do đó, phương trình mặt phẳng \((P)\) là \(3x + 5y - 4z - 5m = 0.\)

Khi đó \((P)\) chứa hai tiếp tuyến với mặt cầu kẻ từ \(M\) và cùng vuông góc với d.

Để tồn tại các tiếp tuyến thoả mãn bài toán điểu kiện là

\(\left\{ \begin{array}{l}d\left( {I,\,\,\left( P \right)} \right) < R\\IM > R\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{\left| { - 19 - 5m} \right|}}{{5\sqrt 2 }} < 5\\\sqrt {{{\left( {m + 2} \right)}^2} + 10}  > 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| {5m + 19} \right| < 25\sqrt 2 \\{\left( {m + 2} \right)^2} > 15\end{array} \right.\)

\[ \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - 25\sqrt 2  - 19}}{5} < m < \frac{{25\sqrt 2  - 19}}{5}\\\left[ \begin{array}{l}m > \sqrt {15}  - 2\\m <  - \sqrt {15}  - 2\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}\sqrt {15}  - 2 < m < \frac{{25\sqrt 2  - 19}}{5}\\\frac{{ - 25\sqrt 2  - 19}}{5} < m <  - \sqrt {15}  - 2\end{array} \right.\).

Vì \(m\) là số nguyên nên \[m \in \left\{ {2\,;\,\,3\,;\,\, - 10\,;\,\, \ldots \,;\,\, - 6} \right\}.\]

Vậy có 7 giá trị nguyên của \(m\) thoả mãn bài toán.

Đáp án: 7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 8,890

Câu 2:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 7,745

Câu 3:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 6,066

Câu 4:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 4,786

Câu 5:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 2,549

Câu 6:

Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng

Xem đáp án » 25/06/2024 2,214

Câu 7:

Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x}  + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}}  + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là

Xem đáp án » 25/06/2024 2,165

Bình luận


Bình luận