Câu hỏi:
11/07/2024 45Trong không gian Oxyz, cho mặt cầu \[(S):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và đường thẳng \(d:\frac{x}{3} = \frac{{y - 2}}{5} = \frac{{z + 3}}{{ - 4}}.\) Có bao nhiêu điểm \(M\) thuộc trục tung, với tung độ là số nguyên, mà từ \(M\) kẻ được đến \((S)\) hai tiếp tuyến cùng vuông góc với \(d\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Mặt cầu \((S)\) có \[I\left( {1\,;\,\, - 2\,;\,\,3} \right)\], bán kính \(R = 5.\)
Vì \(M \in Oy\) nên \(M\left( {0\,;\,\,m\,;\,\,0} \right).\)
Gọi \((P)\) là mặt phẳng đi qua \(M\) và vuông góc với đường thẳng \(d\)
Do đó, phương trình mặt phẳng \((P)\) là \(3x + 5y - 4z - 5m = 0.\)
Khi đó \((P)\) chứa hai tiếp tuyến với mặt cầu kẻ từ \(M\) và cùng vuông góc với d.
Để tồn tại các tiếp tuyến thoả mãn bài toán điểu kiện là
\(\left\{ \begin{array}{l}d\left( {I,\,\,\left( P \right)} \right) < R\\IM > R\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{\left| { - 19 - 5m} \right|}}{{5\sqrt 2 }} < 5\\\sqrt {{{\left( {m + 2} \right)}^2} + 10} > 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left| {5m + 19} \right| < 25\sqrt 2 \\{\left( {m + 2} \right)^2} > 15\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - 25\sqrt 2 - 19}}{5} < m < \frac{{25\sqrt 2 - 19}}{5}\\\left[ \begin{array}{l}m > \sqrt {15} - 2\\m < - \sqrt {15} - 2\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}\sqrt {15} - 2 < m < \frac{{25\sqrt 2 - 19}}{5}\\\frac{{ - 25\sqrt 2 - 19}}{5} < m < - \sqrt {15} - 2\end{array} \right.\).
Vì \(m\) là số nguyên nên \[m \in \left\{ {2\,;\,\,3\,;\,\, - 10\,;\,\, \ldots \,;\,\, - 6} \right\}.\]
Vậy có 7 giá trị nguyên của \(m\) thoả mãn bài toán.
Đáp án: 7.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!