Câu hỏi:
25/06/2024 133Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông có độ dài đường chéo bằng \(a\sqrt 2 \) và S A vuông góc với mặt phẳng \(\left( {ABCD} \right).\) Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {SBD} \right)\) và \(\left( {ABCD} \right).\) Nếu \(\tan \alpha = \sqrt 2 \) thì góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\) bằng bao nhiêu độ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(I = AC \cap BD.\)
Hình vuông \[ABCD\] có độ dài đường chéo bằng \(a\sqrt 2 \) suy ra hình vuông đó có cạnh bằng \[a.\]
Ta có \(\left\{ \begin{array}{l}\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\\SI \bot BD\\AI \bot BD\end{array} \right.\)
\( \Rightarrow \left( {\widehat {\left( {SBD} \right)\,;\,\,\left( {ABCD} \right)}} \right) = \left( {\widehat {SI\,;\,\,A}I} \right) = \widehat {SIA}.\)Ta có \(\tan \alpha = \tan \widehat {SIA} = \frac{{SA}}{{AI}} \Leftrightarrow SA = a.\)
Chọn hệ trục toạ độ \[Oxyz\] như hình vẽ.
Ta có \(A\left( {0\,;\,\,0\,;\,\,0} \right)\,,\,\,B\left( {a\,;\,\,0\,;\,\,0} \right)\,,\,\,C\left( {a\,;\,\,a\,;\,\,0} \right)\,,\,\,S\left( {0\,;\,\,0\,;\,\,a} \right).\)
Khi đó \(\overrightarrow {SA} = \left( {0\,;\,\,0\,;\,\, - a} \right)\,;\,\,\overrightarrow {SC} = \left( {a\,;\,\,a\,;\,\, - a} \right)\,;\,\,\overrightarrow {SB} = \left( {a\,;\,\,0\,;\,\, - a} \right).\)
Mặt phẳng \(\left( {SAC} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( { - 1\,;\,\,1\,;\,\,0} \right).\)
Mặt phẳng \(\left( {SBC} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {1\,;\,\,0\,;\,\,1} \right).\)
Suy ra \(\cos \left( {\widehat {\left( {SAC} \right);\,\,\left( {SBC} \right)}} \right) = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{1}{{\sqrt 2 \cdot \sqrt 2 }} = \frac{1}{2} \Rightarrow \left( {\widehat {\left( {SAC} \right);\,\,\left( {SBC} \right)}} \right) = 60^\circ .\)
Đáp án: 60.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 2:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 3:
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Câu 4:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 5:
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Câu 6:
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Câu 7:
về câu hỏi!