Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có bảng xét dấu của \[f'\left( x \right)\] như hình sau:

Số điểm cực trị của hàm số \(y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) là
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có bảng xét dấu của \[f'\left( x \right)\] như hình sau:
Số điểm cực trị của hàm số \(y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) là
Quảng cáo
Trả lời:

Xét hàm số \(g\left( x \right) = f\left( {{e^{{x^2} - \,x - 2}}} \right)\,;\,\,g'\left( x \right) = \left( {2x - 1} \right){e^{{x^2} - x - 2}} \cdot f'\left( {{e^{{x^2} - \,x - 2}}} \right)\);
\(g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 1 = 0}\\{f'\left( {{e^{{x^2} - x - 2}}} \right) = 0}\end{array}} \right.\)Với \(2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}.\)
Với \(f'\left( {{e^{{x^2} - x - 2}}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{e^{{x^2} - x - 2}} = - 2\,({\rm{VN}})}\\{{e^{{x^2} - x - 2}} = 0}\\{{e^{{x^2} - x - 2}} = 1}\end{array}({\rm{VN}})\,\, \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 2}\end{array}} \right.} \right..\)
Suy ra phương trình \(g'\left( x \right) = 0\) có 3 nghiệm phân biệt nên hàm số \(g(x)\) có 3 điểm cực trị trong đó có 2 điểm cực trị có hoành độ dương.
Vì vậy hàm số \(g\left( {\,\left| x \right|} \right) = y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) có 5 điểm cực trị.
Đáp án: 5.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Câu 2
Lời giải
Ta có \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số đã cho nên
\(\left\{ {\begin{array}{*{20}{l}}{a \cdot {1^3} + 4 \cdot {1^2} + b \cdot 1 + 1 = - 5}\\{3a \cdot {1^2} + 8 \cdot 1 + b = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = - 10}\\{3a + b = - 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = - 11}\end{array}} \right.} \right.} \right..\)
\( \Rightarrow f\left( x \right) = {x^3} + 4{x^2} - 11x + 1 \Rightarrow f\left( 2 \right) = 3.\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.