Câu hỏi:

25/06/2024 174

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có bảng xét dấu của \[f'\left( x \right)\] như hình sau:

Media VietJack

Số điểm cực trị của hàm số \(y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) là

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \(g\left( x \right) = f\left( {{e^{{x^2} - \,x - 2}}} \right)\,;\,\,g'\left( x \right) = \left( {2x - 1} \right){e^{{x^2} - x - 2}} \cdot f'\left( {{e^{{x^2} - \,x - 2}}} \right)\);

\(g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 1 = 0}\\{f'\left( {{e^{{x^2} - x - 2}}} \right) = 0}\end{array}} \right.\)Với \(2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}.\)

Với \(f'\left( {{e^{{x^2} - x - 2}}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{e^{{x^2} - x - 2}} =  - 2\,({\rm{VN}})}\\{{e^{{x^2} - x - 2}} = 0}\\{{e^{{x^2} - x - 2}} = 1}\end{array}({\rm{VN}})\,\, \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 1}\\{x = 2}\end{array}} \right.} \right..\)

Suy ra phương trình \(g'\left( x \right) = 0\) có 3 nghiệm phân biệt nên hàm số \(g(x)\) có 3 điểm cực trị trong đó có 2 điểm cực trị có hoành độ dương.

Vì vậy hàm số \(g\left( {\,\left| x \right|} \right) = y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) có 5 điểm cực trị.

Đáp án: 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 8,923

Câu 2:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 7,763

Câu 3:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 6,332

Câu 4:

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Xem đáp án » 11/07/2024 4,807

Câu 5:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 2,645

Câu 6:

Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng

Xem đáp án » 25/06/2024 2,221

Câu 7:

Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x}  + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}}  + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là

Xem đáp án » 25/06/2024 2,174

Bình luận


Bình luận