Câu hỏi:

26/06/2024 8,259

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm của mặt cầu \((S).\)

Mặt cầu \((S)\) tiếp xúc với các mặt phẳng tọa độ

\[ \Rightarrow d\left( {I,\,\,\left( {Oxy} \right)} \right) = d\left( {I,\,\,\left( {Oyz} \right)} \right) = d\left( {I,\,\,\left( {Oxz} \right)} \right) \Leftrightarrow \left| a \right| = \left| b \right| = \left| c \right| = R\].

Mặt cầu \((S)\) đi qua \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ.

Suy ra \(I\) và \(A\) phải cùng nằm trên một góc phần tám.

\( \Rightarrow \left\{ \begin{array}{l}IA = R\\a > 0\,;\,\,c > 0\,;\,\,b < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = {R^2}\\a > 0\,;\,\,c > 0\,;\,\,b < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a - 1} \right)}^2} + {{\left( {b + 1} \right)}^2} + {{\left( {c - 4} \right)}^2} = {R^2}}\\{a = c =  - b = R > 0\,\,\,\,\,\,\,\,\,(do\,\,(1))}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {a - 1} \right)^2} + {\left( { - a + 1} \right)^2} + {\left( {a - 4} \right)^2} = {a^2}\\a = c =  - b = R > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2{a^2} - 12a + 18 = 0\\a = c =  - b = R > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 6a + 9 = 0\\a = c =  - b = R > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = c = 3\\b =  - 3\\R = 3\end{array} \right..\)

Do đó \(\left( S \right):{\left( {x - 3} \right)^3} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 9.\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP