Câu hỏi:
26/06/2024 8,259Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Quảng cáo
Trả lời:
Gọi \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm của mặt cầu \((S).\)
Mặt cầu \((S)\) tiếp xúc với các mặt phẳng tọa độ
\[ \Rightarrow d\left( {I,\,\,\left( {Oxy} \right)} \right) = d\left( {I,\,\,\left( {Oyz} \right)} \right) = d\left( {I,\,\,\left( {Oxz} \right)} \right) \Leftrightarrow \left| a \right| = \left| b \right| = \left| c \right| = R\].
Mặt cầu \((S)\) đi qua \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ.
Suy ra \(I\) và \(A\) phải cùng nằm trên một góc phần tám.
\( \Rightarrow \left\{ \begin{array}{l}IA = R\\a > 0\,;\,\,c > 0\,;\,\,b < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = {R^2}\\a > 0\,;\,\,c > 0\,;\,\,b < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a - 1} \right)}^2} + {{\left( {b + 1} \right)}^2} + {{\left( {c - 4} \right)}^2} = {R^2}}\\{a = c = - b = R > 0\,\,\,\,\,\,\,\,\,(do\,\,(1))}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {a - 1} \right)^2} + {\left( { - a + 1} \right)^2} + {\left( {a - 4} \right)^2} = {a^2}\\a = c = - b = R > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2{a^2} - 12a + 18 = 0\\a = c = - b = R > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 6a + 9 = 0\\a = c = - b = R > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = c = 3\\b = - 3\\R = 3\end{array} \right..\)
Do đó \(\left( S \right):{\left( {x - 3} \right)^3} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 9.\) Chọn B.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x = - \frac{d}{c}.\)
Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)
Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)
Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)
Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.
Lời giải
Ta có: \(\overrightarrow {AB} = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC} = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD} = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).
\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 = - 24\).
Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.