Câu hỏi:
26/06/2024 1,019Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm của mặt cầu \((S).\)
Mặt cầu \((S)\) tiếp xúc với các mặt phẳng tọa độ
\[ \Rightarrow d\left( {I,\,\,\left( {Oxy} \right)} \right) = d\left( {I,\,\,\left( {Oyz} \right)} \right) = d\left( {I,\,\,\left( {Oxz} \right)} \right) \Leftrightarrow \left| a \right| = \left| b \right| = \left| c \right| = R\].
Mặt cầu \((S)\) đi qua \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ.
Suy ra \(I\) và \(A\) phải cùng nằm trên một góc phần tám.
\( \Rightarrow \left\{ \begin{array}{l}IA = R\\a > 0\,;\,\,c > 0\,;\,\,b < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = {R^2}\\a > 0\,;\,\,c > 0\,;\,\,b < 0\end{array} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {a - 1} \right)}^2} + {{\left( {b + 1} \right)}^2} + {{\left( {c - 4} \right)}^2} = {R^2}}\\{a = c = - b = R > 0\,\,\,\,\,\,\,\,\,(do\,\,(1))}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {a - 1} \right)^2} + {\left( { - a + 1} \right)^2} + {\left( {a - 4} \right)^2} = {a^2}\\a = c = - b = R > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2{a^2} - 12a + 18 = 0\\a = c = - b = R > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 6a + 9 = 0\\a = c = - b = R > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = c = 3\\b = - 3\\R = 3\end{array} \right..\)
Do đó \(\left( S \right):{\left( {x - 3} \right)^3} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 9.\) Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?
Câu 3:
Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng
Câu 4:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y = - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?
Câu 5:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}\)?
Câu 6:
về câu hỏi!