Câu hỏi:
24/07/2024 2,416Ở ruồi giấm, xét 3 cặp gen: A, a; B, b và D, d; mỗi gen quy định 1 tính trạng, các alen trội là trội hoàn toàn. Phép lai P: 2 ruồi đều có kiểu hình trội về 3 tính trạng giao phối với nhau, tạo ra F1 gồm 24 loại kiểu gen và có 1,25% số ruồi mang kiểu hình lặn về 3 tính trạng nhưng kiểu hình này chỉ có ở ruồi đực. Theo lí thuyết, trong tổng số ruồi cái có kiểu hình trội về 3 tính trạng ở F1, số ruồi có 5 alen trội chiếm tỉ lệ là bao nhiêu?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
F1 thu được 24 loại kiểu gen mà kiểu hình lặn về 3 tính trạng chiếm 1,25% chỉ có ở giới đực ® Gen nằm trên NST giới tính X tại vùng không tương đồng.
TH1: Xét 1 gen nằm trên giới tính (ví dụ gen Dd)
Ta có: XDXd × XDY ® XdY = 0,25 ® (aa, bb) = 1,25% : 0,25 = 5% = 10% ab (ruồi giấm cái) × 50% ab (ruồi giấm đực – ruồi giấm đực không hoán vị gen). Vậy ab (ruồi giấm cái) = 10% suy ra kiểu gen của ruồi giấm cái là \[\frac{{Ab}}{{aB}}\]. Vậy P là \[\frac{{Ab}}{{aB}}\] XDXd (f = 20%) × \[\frac{{AB}}{{ab}}\]XDY . Thử lại, số loại kiểu gen = 7 × 4 = 28 (không thỏa mãn).
Vậy 2 gen nằm trên 1 cặp NST giới tính (ví dụ gen Bb, Dd).
Số loại kiểu gen = 24 = 3 × 8 (cặp Aa có 3 kiểu gen; cặp Bb, Dd có 8 kiểu gen).
Phép lai gen Aa = Aa × Aa ® aa = 0,25 ® XbdY = 5% ® Xbd = 10%.
® F1: AaXBdXbD × AaXBDY.
® Ruồi cái A-B-D- ở F1 = 0,75 × 1/2 = 0,375.
Xác định tỉ lệ ruồi cái có 5 alen trội ở F1:
+ Ruồi cái AA cần 3 alen trội cặp BD (XBDXBd và XBDXbD)\( = \frac{1}{4} \times (0,5 \times 0,4 + 0,5 \times 0,4) = 0,1.\)
+ Ruồi cái Aa cần 4 alen trội cặp BD (XBDXBD) \( = \frac{2}{4} \times (0,5 \times 0,1) = 0,025.\)
Vậy tỉ lệ cần tìm = \[\frac{{0,1 + 0,025}}{{0,375}} = \frac{1}{3}.\] Đáp án: \(\frac{1}{3}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Câu 2:
Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng
Câu 3:
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?
Câu 4:
Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?
Câu 5:
Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y = - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!