Câu hỏi:

13/07/2024 169 Lưu

Cho tam giác ABC có I là giao điểm của ba đường phân giác. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB (Hình 12).

Đặt r = IM. Đường tròn (I; r) có phải là đường tròn nội tiếp tam giác ABC hay không? Vì sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có IM = IN = IP = r nên ba điểm M, N, P cùng nằm trên đường tròn (O; r).

Lại có IM BC, IN  AC, IP AB nên đường tròn (O; r) tiếp xúc với ba cạnh BC, AC, AB.

Vậy đường tròn (O; r) là đường tròn nội tiếp tam giác ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử đường tròn (I; 4 cm) nội tiếp tam giác đều ABC có cạnh bằng a (cm). Khi đó AB = a (cm).

Vì tam giác ABC đều ngoại tiếp đường tròn (I; 4 cm) nên ta có

Suy ra

Vậy

Lời giải

Giả sử tam giác ABC đều có cạnh bằng a (dm) nội tiếp đường tròn (O; 4 dm).

Khi đó AB = a (dm).

Vì tam giác đều ABC nội tiếp đường tròn (O) nên ta có

Suy ra

Vậy

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP