Câu hỏi:

13/07/2024 61

Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:

DB AB và CD AC;

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì góc ABD, góc ACD đều là các góc nội tiếp chắn nửa đường tròn (O) (do AD là đường kính của (O)) nên

Do đó DB AB và CD AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho bán kính đường tròn nội tiếp tam giác đều bằng 4 cm. Tính cạnh của tam giác đều đó.

Xem đáp án » 13/07/2024 485

Câu 2:

Một chiếc máy quay ở đài truyền hình được đặt trên giá đỡ ba chân, các điểm tiếp xúc với mặt đất của ba chân lần lượt là ba đỉnh A, B, C của tam giác đều ABC (Hình 10). Tính khoảng cách giữa hai vị trí A và B, biết bán kính đường tròn ngoại tiếp tam giác ABC là 4 dm.

Xem đáp án » 13/07/2024 464

Câu 3:

Tam giác đều ABC nội tiếp đường tròn (O; 2 cm). Tính AB.

Xem đáp án » 13/07/2024 277

Câu 4:

Cho tam giác đều ABC cạnh a, ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm O (Hình 14).

AM, BN, CP có là các đường phân giác của tam giác ABC hay không?

Xem đáp án » 13/07/2024 249

Câu 5:

Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:

Tứ giác BHCD là hình bình hành;

Xem đáp án » 13/07/2024 200

Câu 6:

Cho tam giác đều ABC ngoại tiếp đường tròn (O; 6 cm). Tính AB.

Xem đáp án » 13/07/2024 180

Câu 7:

Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC (Hình 7). Đường tròn (O; OB) có phải là đường tròn ngoại tiếp của tam giác ABC hay không?

Xem đáp án » 13/07/2024 175

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store