Câu hỏi:
13/07/2024 93Cho tứ giác ABCD có các tam giác ABC và ADC lần lượt ngoại tiếp các đường tròn (I) và (K) sao cho hai đường tròn này cùng tiếp xúc với đường thẳng AC tại điểm H thuộc đoạn thẳng AC. Giả sử đường tròn (I) tiếp xúc với cạnh AB tại M, đường tròn (K) tiếp xúc với cạnh AD tại N (Hình 17).
Chứng minh:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét đường tròn (I) có hai tiếp tuyến AB, AC cắt nhau tại A nên AI là đường phân giác của góc BAC, do đó
Xét đường tròn (K) có hai tiếp tuyến AD, AC cắt nhau tại A nên AK là đường phân giác của góc CAD, do đó
Ta có:
Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho bán kính đường tròn nội tiếp tam giác đều bằng 4 cm. Tính cạnh của tam giác đều đó.
Câu 2:
Một chiếc máy quay ở đài truyền hình được đặt trên giá đỡ ba chân, các điểm tiếp xúc với mặt đất của ba chân lần lượt là ba đỉnh A, B, C của tam giác đều ABC (Hình 10). Tính khoảng cách giữa hai vị trí A và B, biết bán kính đường tròn ngoại tiếp tam giác ABC là 4 dm.
Câu 4:
Cho tam giác đều ABC cạnh a, ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm O (Hình 14).
Câu 5:
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
Câu 7:
Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC (Hình 7). Đường tròn (O; OB) có phải là đường tròn ngoại tiếp của tam giác ABC hay không?
về câu hỏi!