Câu hỏi:

12/07/2024 3,023 Lưu

Một nhà máy sản xuất hai loại sản phẩm, mỗi sản phẩm yêu cầu sử dụng ba máy. Máy đầu tiên có thể được sử dụng nhiều nhất là 70 giờ, máy thứ hai nhiều nhất là 40 giờ và máy thứ ba nhiều nhất là 90 giờ. Sản phẩm thứ nhất cần 2 giờ trên máy I, 1 giờ trên máy II và 1 giờ trên máy III; sản phẩm thứ hai cần 1 giờ cho mỗi máy I, II và 3 giờ trên máy III. Nếu lợi nhuận là 400 nghìn đồng/đơn vị cho sản phẩm thứ nhất và 600 nghìn đồng/đơn vị cho sản phẩm thứ hai, thì cần sản xuất bao nhiêu đơn vị mỗi sản phẩm để lợi nhuận thu được là lớn nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi x và y lần lượt là số sản phẩm thứ nhất và sản phẩm thứ hai cần sản xuất.

Lợi nhuận thu được là: 400x + 600y (nghìn đồng).

Hệ bất phương trình ràng buộc x và y là

Miền nghiệm của hệ bất phương trình này là miền ngũ giác OABCD được tô màu như hình vẽ dưới đây:

Ở đây, d1: 2x + y = 70, d2: x + y = 40 và d3: x + 3y = 90.

Các điểm cực biên là: O(0; 0), A(0; 30), B(15; 25), C(30; 10), D(35; 0).

Bài toán yêu cầu tìm giá trị lớn nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác. Tính giá trị của F(x; y) tại các đỉnh của ngũ giác ta được:

F(0; 0) = 400.0 + 600.0 = 0;

F(0; 30) = 400.0 + 600.30 = 18 000;

F(15; 25) = 400.15 + 600.25 = 21 000;

F(30; 10) = 400.30 + 600.10 = 18 000;

F(35; 0) = 400.35 + 600.0 = 14 000.

Giá trị lớn nhất của F(x; y) bằng 21 000 tại điểm cực biên B(15; 25). Phương án tối ưu là (15; 25).

Vậy cần sản xuất 15 đơn vị sản phẩm thứ nhất và 25 đơn vị sản phẩm thứ hai để lợi nhuận thu được là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử tình huống được mô tả bởi hình vẽ dưới đây với C là vị trí mắt của người quan sát, DB = 4 m là chiều cao của bức tranh, AD = 3 m là khoảng cách từ mép dưới của bức tranh đến mắt người quan sát. 

Giả sử AC = x (m) là khoảng cách từ người quan sát đến tường, x > 0.

Khi đó, ta có:

Áp dụng hệ quả định lí Cosin vào tam giác BCD, ta có:

Hay

Với θ (0°; 90°), để góc nhìn θ lớn nhất thì cosθ nhỏ nhất.

Đặt hàm số xét trên khoảng (0; +∞).

Khi đó, ta cần tìm giá trị nhỏ nhất của f(x) trên (0; +∞).

Ta có

f’(x) = 0  16x3 – 336x = 0 x = 0 (loại) hoặc x2 = 21

                (do x  (0; +∞)).

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

0

 

 

+∞

 

0

+

 

1

 

 

 

1

 

Từ bảng biến thiên, ta có khi

Vậy người quan sát phải đứng cách tường mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất).

Lời giải

Gọi x (m) là chiều cao của đèn, x > 0.

Khi đó, ta có: s2 = x2 + 202 = x2 + 400

Cường độ chiếu sáng của đèn là:

Xét hàm số trên khoảng (0; +∞).

Đạo hàm của hàm số I là:

Ta có I’ = 0 400 – x2 = 0 x = 20 (do x > 0).

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

0

 

20

 

+∞

 

+

0

 

0

 

0,025

 

 

0

Từ bảng biến thiên, ta có khi x = 20.

Vậy độ cao của cột đèn là 20 mét thì sẽ chiếu sáng mạnh nhất cho lối đi bộ.